
Image Processing

Chapter 6
Directional Image Analysis
and Processing
Prof. Michael Unser, LIB

February 2024

Unser / Image Processing 6-

CONTENT

■ 6.1 Mathematical foundations
■ Rotation in the Fourier transform
■ Radon transform
■ Rotation of polynomials
■ Directional derivatives

■ 6.2 Local directional analysis
■ Structure tensor

■ 6.3 Steerable filters
■ Derivative-based filters

■ Appendix
■ Edge and ridge detectors

2

Demo

IP-LAB-4

Unser / Image Processing 6-

Directionality in image processing

■ Importance of directional cues
■ Edges, ridges, patterns, texture
■ Visual perception is orientation-sensitive
■ Organization of primary visual cortex: 

orientation-selective detectors (Hubel-Wiesel)

■ Invariant processing and feature detection
■ Invariant operators: Gradient, Laplacian, ...

■Computational challenges
■ Selectivity to orientation
■ Steerability (orientation can be arbitrary)
■ Separable filters are not orientation-sensitive

3

Unser / Image Processing 6-

6.1 Mathematical foundations

4

■ Rotation property of the Fourier transform
■ Central-slice theorem
■ Steerability of polynomials
■ Directional derivatives

6-Unser: Image processing

Rotation in the Fourier domain

5

Proof (by change of variable): y = Rx ⇥ dy1 · · · dyd = det(R)⌅ ⇤⇥ ⇧
=1

dx1 · · · dxd

�

Rd

f(Rx)e�j⇥�,x⇤ dx1 · · · dxd =
�

Rd

f(y)e�j⇥�,RT y⇤ dy1 · · · dyd

=
�

Rd

f(y)e�j⇥R�,y⇤ dy1 · · · dyd = f̂(R�)

Example (2⇥ 2 rotation matrix): R� =

�
cos � � sin �

sin � cos �

⇥

Continuous-domain Fourier transform: f̂(�) =
�

Rd

f(x)e�j⇤�,x⌅dx1 · · · dxd

Rotation property of the Fourier transform

f(Rx) F⇤⌅ f̂(R�)

R: Orthonormal d⇥ d matrix such that R�1 = RT

6-Unser: Image processing

Central-slice theorem

6

�

�x

�y

p̂ �
(�

)

Fourier transform

Proof: for � = 0

f̂(⇥, 0) =
⇤ +⇥

�⇥

⇤ +⇥

�⇥
f(x, y)e�j�x dxdy =

⇤ +⇥

�⇥

�⇤ +⇥

�⇥
f(x, y) dy

⇥

⌃ ⇧⌅ ⌥
p0(x)

e�j�x dx = p̂0(⇥)

then use rotation property. . .

Radon transform

p�(t) = R {f(x, y)} (t, �)

=
� +⇥

�⇥
f(R�t⌅⇤⇥⇧

x=(x,y)

) ds

�
x

y

⇥
= R�t =

⇤
cos � � sin �

sin � cos �

⌅

⌥ ⌃⇧ �
R�

�
t

s

⇥
x

yp �
(t)

t

�

s

Central-slice theorem

p̂�(⇥) = f̂(⇥ cos �, ⇥ sin �) = f̂pol(⇥, �)

6-Unser: Image processing

Steerability of polynomials

7

Property. The rotated version of a multidimensional polynomial of degree p is
a polynomial of degree p. This implies that polynomials are “steerable”.

Key observations for establishing rotation property

A multidimensional polynomial of total degree p is a linear combination of

monomials of degree n � p: (xk1
1 xk2

2 · · ·xkd
d) with

Pd
i=1 ki = n

Applying an affine transformation to a monomial of (total) degree k yields a

linear combination of monomials of degree k =
Pd

i=1 li witk li ⇥ 0

dX

i=1

aixi

!k

=
X

l1,l2,...,ld

✓
k

l1, l2, . . . , ld

◆⇣
al11 a

l2
2 · · · aldd

⌘
xl1
1 x

l2
2 · · ·xld

d

(a xn1
i) · (b xn2

i) = (ab)xn1+n2
i

⇤ Overall result of rotation = linear combination of monomials

6-Unser: Image processing

Reminder: multinomial expansion

8

Multinomial coefficients:
�

n

k1, k2, . . . , kd

⇥
=

n!
k1! k2! · · · kd!

with convention that 0! = 1

Generalized version of binomial expansion

(y1 + y2 + · · · + yd)
n =

⌅

k1,k2,...,kd

�
n

k1, k2, . . . , kd

⇥
yk1
1 yk2

2 · · · ykd
d

with summation over all nonnegative multi-integers such that
⇤d

i=1 ki = n

6-Unser: Image processing

Explicit steering of a 2D polynomial (optional)

Change of variables: i� j = k + l; j = m� (k + l) and collecting factors

⇥ p�(y1, y2) = p(x1, x2) =
M�

i=0

i�

j=0

bi,j xi�j
1 xj

2

with bi,j = polynomial(cos �, sin �)

Rotated polynomial of degree M : p�(y1, y2) =
M�

m=0

m�

n=0

am,nym�n
1 yn

2

Steering transformation: y1 = cos � x1 � sin � x2, y2 = sin � x1 + cos � x2

ym�n
1 =

m�nX

k=0

m� n

k

!
(cos �)k(�1)m�n�k(sin �)m�n�kxk

1xm�n�k
2

yn
2 =

nX

l=0

n
l

!
(sin �)l(cos �)n�lxl

1x
n�l
2

p(x1, x2) =
MX

m=0

mX

n=0

am,n

m�nX

k=0

nX

l=0

m� n

k

!
n
l

!
(cos �)k+n�l(�1)m�n�k(sin �)m�n�k+lxk+l

1 xm�(k+l)
2

9

6-Unser: Image processing

Gradient and directional derivatives

10

Direction specification: u = (u1, . . . , ud) ⌅ Rd with ⌥u⌥ = 1 (unit vector)

First-order directional derivatives

Duf(x) = lim
h�0

f(x)� f(x� hu)
h

= ⇧u,�f(x)⌃ F⇥⇤ j⇧u,� ⌃f̂(�)

=
d⇤

i=1

ui
⌅f(x)
⌅xi

F⇥⇤
�

j
d⇤

i=1

ui�i

⇥
f̂(�)

Geometric interpretation in 2D

Unit vector: u� = (cos �, sin �)

Du�f(x1, x2) = cos �
⇤f(x1, x2)

⇤x1
+ sin �

⇤f(x1, x2)
⇤x2

max
�u�=1

{Duf} (x1, x2) = ⇤�f(x1, x2)⇤ u�
Du�f

�f

fx2

fx1

-80 800

0 255

-𝛱 0 +𝛱

6-Unser: Image processing

Higher-order directional derivatives

12

2D example: n = 2

Unit vector: u� = (cos �, sin �)

D2
u�

f(x1, x2) = cos2 �
⇤2f(x1, x2)

⇤x2
1

+2 cos � sin �
⇤2f(x1, x2)

⇤x1⇤x2
+sin2 �

⇤2f(x1, x2)
⇤x2

2

Direction specification: u = (u1, . . . , ud) ⇧ Rd with ⌃u⌃ = 1 (unit vector)

Directional derivatives of order n

Dn
uf(x) = DuDu · · · Du� ⌥⌃

n times

f(x) F⇥⇤
⇤

j
d⇧

i=1

ui�i

⌅n

f̂(�)

=
⇧

k1,k2,...,kd

�
n

k1, k2, . . . , kd

⇥
uk1

1 uk2
2 · · · ukd

d

⌅nf(x)
⌅xk1

1 ⌅xk2
2 · · · ⌅xkd

d

⌅ linear combination of partial derivatives of order n

Unser / Image Processing 6-

6.2 Directional image analysis

13

■Structure tensor
■ Implementation
■Examples of 2D directional analysis

6-Unser: Image processing

Structure tensor

14

Structure tensor at location x0

J(x0) =

Z

Rd

w(x� x0)
⇣
rf(x)rT f(x)

⌘
dx1 · · · dxd

w(x): nonnegative symmetric observation window (e.g., Gaussian)

J: d⇥ d symmetric matrix

Eigenvectors and eigenvalues: Jui = �i · ui, with �1 � · · · � �d

Interpretation (for window centered at x0 = 0)

Weighted differential inner-product matrix: J = hrf,rfiw
[J]i,j = h @f

@xi
, @f
@xj

iw with hf1, f2iw =

Z

Rd

w(x)f1(x)f2(x) dx1 · · · dxd

Energy of the derivative in the direction u

kDufk2w = huTrf,uTrfiw = uT hrf,rfiwu = uTJu

Dominant orientation of neighborhood: u1 = arg max
u,kuk=1

kDufk2w

Eigenvalues: �i = uT
i Jui

6-Unser: Image processing

Structure tensor in 2D

15

Implementation f2
x

�eq

smoothing
filter

Gradient

×

smoothing
filter×

smoothing
filter×

f(x, y)
fx

fy

f2
y

fxfy

J22(x, y)

J(x, y) =

�
J11(x, y) J12(x, y)
J12(x, y) J22(x, y)

⇥

J11(x, y)

J12(x, y)

Local features

Gradient energy: E = trace(J) = J11 + J22

Orientation: u1 = (cos �, sin �) with � =
1
2

arctan
�

2J12

J22 � J11

⇥

Coherency: 0 ⇥ C =
⇤max � ⇤min

⇤max + ⇤min
=

⇤
(J22 � J11)2 + 4J2

12

J22 + J11
⇥ 1

Harris corner index: H = det(J)� ⇥ trace(J)2 with ⇥ ⇤ [0.04, 0.15]

6-Unser: Image processing

Examples of directional analysis

16

Input Dx Dy

OrientationCoherency

-𝛱 0 +𝛱0 0.5 1

Orientation

Energy

Coherency

OrientationInput

Gaus

RGB

HSB

Color HSB

representation

Hue: orientation

Saturation: coherency

Brightness: input

Input

Open-source
software

Plugins of ImageJ
OrientationJ

Directional Analysis

Keypoints detector
(Harris Corner)

Distribution of
orientations

Vector Field

Z. Püspöki et al. "Transforms and
Operators for Directional Bioimage
Analysis: A Survey," Advances in
Anatomy, Embryology and Cell Biology,
Springer International Publishing, 2016.

http://bigwww.epfl.ch/publications/puespoeki1603.html
http://bigwww.epfl.ch/publications/puespoeki1603.html
http://bigwww.epfl.ch/publications/puespoeki1603.html

Unser / Image Processing 6-

6.3 Steerable filters

19

■Directional pattern matching
■Steerable filters
■Derivative-based filters
■Appendix: specific implementations

6-Unser: Image processing

Directional pattern matching

20

Task: detection/enhancement of a given type of directional pattern
Example: edge, line, ridge, filament, corner, etc.

Problem: computationally very expensive!

Maximum-likelihood estimator (rotating matched filter)

�̃(x0) = arg max
�

{(f ⇤ h(R�·)) (x0)} where h(x) = f0(�x)

Ĩ(x0) =
�
f ⇤ h(R�̃·)

⇥
(x0)

f0(x) : feature template (elongated blob)

x0 : spatial location (unknown)

R� : 2� 2 rotation matrix by � (unknown)

I : intensity (unknown)

n(x): additive Gaussian noise

Local measurement model

f(x) = I · f0
�
R✓(x� x0)

�
+ n(x)

6-Unser: Image processing

Steerable filters

21

(Freeman & Adelson, 1991)

Fast filterbank implementation

Fourier-domain equivalence

h(x) steerable � ĥ(�) steerable

Characterization theorem

h(x) steerable of order M � ĥ(�) = ĥpol(⇥, �) = ⇤̂(⇥)
M/2�

m=�M/2

cm(⇥) ejm�

Definition. A 2D filter h(x), x ⇥ R2 is steerable of order M iff. there exist

some basis filters ⇤m(x) and coefficients am(�) such that

⇤� ⇥ [�⇥,⇥], h�(x) := h(R�x) =
M�

m=1

am(�) ⇤m(x)

...f(x) f � h�(x)

a1(�)

aM (�)

�1

�M

6-Unser: Image processing

Expansion coefficients

Basis functions

Steerable, derivative-based filters

22

Isotropic lowpass function (e.g., Gaussian): '(x1, x2)

Subspace of steerable derivative-based templates:

h(x1, x2) =
MX

m=0

mX

n=0

bm,n
@m

@xm�n
1 @xn

2

'(x1, x2)

| {z }
'm,n(x1,x2)

Proposition. h(x1, x2) is steerable in the sense that

(f ⇤ h(R✓·))(x) =
MX

m=0

mX

n=0

am,n(✓)fm,n(x)

where fm,n(x) =

✓
f ⇤ @m

@xm�n
1 @xn

2

'

◆
(x) and am,n(✓) = poly(cos ✓, sin ✓).

Justification: ĥ(!) = '̂(k!k) ·
MX

m=0

mX

n=0

bm,n (j!1)
m�n(j!2)

n

| {z }
steerable polynomial

6-Unser: Image processing

Examples: Basic edge and ridge detectors

23

f(x)

cos(�)

sin(�)
Du� (� � f)(x)

h = ⇥�
⇥x1

⇥�
⇥x2

Hessian-based ridge detector

h(x) = ⇥20(x) = ⇤2⇥(x)
⇤x2

1

⇥ij(x) = ⇤2⇥(x)
⇤xi⇤xj

h(R�x) = D2
u�

⇥(x)

= (cos �)2 ⇥20(x) + 2 cos � sin � ⇥11(x) + (sin �)2 ⇥02(x)

f(x)
2 cos(�) sin(�)

cos2(�)

sin2(�)

D2
u�

(� � f)(x)

⇥2�
⇥x2

1

⇥2�
⇥x1⇥x2

⇥2�
⇥x2

2

Gradient-based edge detector

h(x) = ⇥1(x) = ⇤⇥(x)
⇤x1

⇥2(x) = ⇤⇥(x)
⇤x2

h(R�x) = Du�⇥(x)

= �u�,�⇥⇥ = cos � ⇥1(x) + sin � ⇥2(x)

6-Unser: Image processing

Optimized steerable detectors

24(Jacob et al., IEEE-PAMI, 2004)

thresholded magnitude

2nd order 4th order

Canny-like criterion of optimality

Reasonable approximation of ideal detector: f0(x, y) = ⇥(y)
Maximum signal-to-noise ratio

Good spatial localization

Reduced oscillation

Constrained optimization of �k,i using Lagrange multipliers

Ridge detectors

...
a1(�)

aM (�)

�1

�M

��(x) = arg max
�

{(h� � f)(x)}

Unser / Image Processing 6-

Appendix: specific implementations

25

■Edge detector
■Ridge detector

6-Unser: Image processing

Edge detector: implementation

26

Gradient

smoothing
filter Gradient Non-maximum

suppression
Hysteresis
threshold

Edge map

�eq (Tlow, Thigh)

modulus

phase

1
6 · 2

2

64
�1 0 1
�4 0 4
�1 0 1

3

75

1
6 · 2

2

64
�1 �4 �1

0 0 0
1 4 1

3

75

f(k, l)

fx(k, l)

fy(k, l)

Smoothing
Gaussian filter: isotropic + separable
Implementation: cascade of simple recursive filters

Steerable filter

�f = (fx, fy)

��f� =
�

f2
x + f2

y

State-of-the-art edge detector
Edge point = local maximum of first directional derivative

6-Unser: Image processing

Edge detector (Cont’d)

27

else g(x0) = 0

Hysteresis threshold

Set of points: k = (k, l) � Z2

Final edge map:

E = {k � Elow � Ehigh | there exits a path that connects k to Ehigh}

Non-maximum suppression
Current point: x0 = (k, l)

Two auxiliary edge maps:

Elow = {k | Tlow � g[k] < Thigh}

Ehigh = {k | Thigh � g[k]}

u =
�f(x0)
��f(x0)�

: unit vector in the direction of the gradient

If ⇤�f(x0)⇤ ⇥ ⇤�f(x0 ± u)⇤ then g(x0) = ⇤�f(x0)⇤

6-Unser: Image processing

Ridge or line detector

28

�

u is an eigenvector of H with eigenvalue �

Hu = �u � det(H� �I) = 0

Extrema values:
�max = max

�u�=1

�
uT Hu

�
(maximum eigenvalue of H)

�min = min
�u�=1

�
uT Hu

�
(minimum eigenvalue of H)

Positive ridge detection

Criterion: �min ⌅ 0 and �max ⇤ 0

Figure of merit: g(x) =
�

|�min| ·
�

|�max � �min| ⇤ |�min| (on ridge)

Direction perpendicular to the ridge: umin (eigenvector of H corresponding to �min)

Smoothed Hessian matrix at location x: H =

�
(�xx � f)(x) (�xy � f)(x)
(�yx � f)(x) (�yy � f)(x)

⇥

Steering in the direction u = (cos �, sin �) (unit vector): D2
u⇥ � f = uT Hu

Signature of a ridge point

Strong (negative) response to “steered” ridge detector & weak response in orthogonal direction

6-Unser: Image processing

Steerable filter

Ridge detector: implementation

29

smoothing
filter Hessian Non-maximum

suppression
Hysteresis
threshold

Ridge map

�eq (Tlow, Thigh)

Figure
of merit

�

Hessian masks

umin = (cos ✓, sin ✓)

g(x) =
�

|�min| ·
�

|�max � �min|
Eigendecomposition of Hessian matrix =�

�2

�x2
:

1
6

�

��
1 �2 1
4 �8 4
1 �2 1

�

��
�2

�x�y
:

1
2 · 2

�

��
1 0 �1
0 0 0
�1 0 1

�

��

�2

�y2
:

1
6

�

��
1 4 1
�2 �8 �2

1 4 1

�

��

Canny-inspired ridge detector

Positive ridge point : local minimum of second derivative

Unser / Image Processing 6-

References

30

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging, IEEE Press,
1987.

W. Forstner, “A Feature Based Correspondence Algorithm for Image Processing,” Int. Archives
of Photogrammetry and Remote Sensing, vol.26, pp.150-166, 1986.

W.T. Freeman and E.H. Adelson, “The Design and Use of Steerable Filters,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 13, no. 9, pp. 891-906, Sept. 1991.

J. Canny, “A Computational Approach to Edge Detection,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 8, no. 6, pp. 679-698, 1986.

M. Jacob, M. Unser, “Design of Steerable Filters for Feature Detection Using Canny-Like
Criteria,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 26, no. 8, pp. 1007-
1019, August 2004.

