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Directionality in image processing

= Importance of directional cues
Edges, ridges, patterns, texture
Visual perception is orientation-sensitive

Organization of primary visual cortex:
orientation-selective detectors (Hubel-Wiesel)

= [nvariant processing and feature detection

Invariant operators: Gradient, Laplacian, ...

= Computational challenges

Selectivity to orientation
Steerability (orientation can be arbitrary)
Separable filters are not orientation-sensitive
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6.1 Mathematical foundations

= Rotation property of the Fourier transform
= Central-slice theorem
= Steerability of polynomials

= Directional derivatives
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Rotation in the Fourier domain

Continuous-domain Fourier transform: f(w) = [ f(x)e 7« ®dz; - dzy
Rd
m Rotation property of the Fourier transform

f(Rz) < f(Rw)

R: Orthonormal d x d matrix such that R~! = R’

§ —sind
Example (2 x 2 rotation matrix): Ry = | . Sl

sinf cos@

Proof (by change of variable): y = Rx — dy;---dyg = det(R)dx;---day
N——
=1

f(RiB)e_J<w7m> dxl “ o dejd — / f(y)e—j<w,RTy> dyl “ .. dyd
R4 Rd

/Rd f(y)e—j<Rw,y> dy; - - - dyg = f(Rw)
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Central-slice theorem

m Radon transform
pe(t) = R{f(x,y)}(¢,0)

:/+Oof( Ryt )ds

X
o 7 WY
N\ k‘ v
T\ _ gy | cost —sinb | [t Fourier transform \‘\
Y ’ sinf cos@ S ‘

\ 7

TV A
Ro Wy i
\ 4

m Central-slice theorem ©

N
N g

po(w) = f(wcosh, wsin@) = foo1(w,6)

Proof: forf =0
X +o00  ptoo ' +0o0 Foo .
f(w,0) = /_ /_ flx,y)e 7" dady = / ( / f(z,y) dy) e 7" dx = po(w)

— OO — 00
(. J/
~~

po(x)
then use rotation property...
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Steerability of polynomials

Property. The rotated version of a multidimensional polynomial of degree p is

a polynomial of degree p. This implies that polynomials are “steerable”.

Key observations for establishing rotation property

= A multidimensional polynomial of total degree p is a linear combination of

monomials of degree nn < p:  (x¥ ah? - %) with Zle ki=mn

= Applying an affine transformation to a monomial of (total) degree £ yields a
linear combination of monomials of degree k = Zle [; witk [, > 0

d k
k
E a;xT; — g ( (alllal; e aild) lellgjl22 .. -gjild
l17127°"7ld

i=1 I1,0la,.... 04
= (ax) - (bx?) = (ab) xj ™

=> Qverall result of rotation = linear combination of monomials
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Reminder: multinomial expansion

Multinomial coefficients:

n B n!
ki,ko,..., kg ok k! Ky

with convention that 0! = 1

Generalized version of binomial expansion

n
(yi+y2+-tyad)" = Y (k L k)yfly'z”“Z'--ySd
by Ko kg 1y 2y -y vd

with summation over all nonnegative multi-integers such that 2?21 ki=mn
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Explicit steering of a 2D polynomlal (optional)

Rotated polynomial of degree M: pg(y1,y2) S‘ Y Y1 Y2

m=0 n=0

Steering transformation: y; = cosf@x; —sinfxy, y9 =sinfx; + cosb zo

= Z (m;n) (cos ) (—=1)™ " F(sin @)™ " Fgi R
—0
n — (n : l n—l 1 mn—l
Yo = (l) (sinf) (cos0)" "xix;
—0
M m m—n n
p(x1,x2) = Z Z Z ( ) <l> (cos )T H(—1)™"""*(sin H)m_”_k+le+lx?_(k+l)
n=0 k=0

Change of variables: : — j = k 4+ 1; j =m — (k + 1) and collecting factors

= p@(ylay2) 3717332 ZZbZJ 371

1=0 5=0

with b; ; = polynomial(cos 6, sin 0)
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Gradient and directional derivatives

Direction specification:

u

I
&
(Y

’’’’’

ug) € R with ||Jul| =1

m First-order directional derivatives

Do f(x)

f(x) — f(x — hu)

lim
h—0

(u, Vf(x))
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Higher-order directional derivatives

Direction specification: u = (uq,...,uq) € R with [[u|| =1 (unit vector)

m Directional derivatives of order n

d T
. T . A
Duf(®) = DuDy-- Dy f(x) N (J > UW@) f(w)
n times =1
n k1 ks ky o" f(x)
= Uy Up™ ~ - Ug ks
kl,k;.,kd (klv k27 SRIRN kd) (‘9:13’1“ 63315 s &ng

= linear combination of partial derivatives of order n

m 2D example: n = 2
= Unit vector: ug = (cos,sin )
0°f(x1,22) . 5 ,0%f(z1,22)

0 f (21, 72)
’ 2 cos 6 sin 6 v
8:13% —+2 CcOs ¢ sin 910 —+Ss1n (9:1:%

= D2, f(z1,22) = cos® 0
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6.2 Directional image analysis

= Structure tensor
= |[mplementation

= Examples of 2D directional analysis
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Structure tensor

m Structure tensor at location x

J(z0) = /R w(z — @) (Vf(a:)VTf(m)> dzy - - dag

= w(x): nonnegative symmetric observation window (e.g., Gaussian)
s J: d X d symmetric matrix

= Eigenvectors and eigenvalues: Ju; = A; -u;, with A\ > --- > Ay

m Interpretation (for window centered at ¢y = 0)

= Weighted differential inner-product matrix: J =(V f, V),
Tig = (G50 Wi (1 foho = [ w(@)fi(@)fale) o -
R

= Energy of the derivative in the direction u

HDUquQu = <U-vaa U—va>w = U-T<Vfa V)wa = u'Ju
= Dominant orientation of neighborhood: u; = arg max Do fII%

Eigenvalues: \; = ul J u;

Unser: Image processing
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Structure tensor in 2D

m Implementation

:)\®f§

f(z,y) ik

——— Gradient
Ty

m Local features

i@fxfy
2

A,ngy R

Gradient energy. E = trace(.]) = J11 -+ J22

1
Orientation: u; = (cosf,sinf) with 0 = 7 arctan (

)\max

Coherency: 0<(C =

- )\min L

smoothing
filter

> smoothing

filter

smoothing

filter J22 (337 y)

J(wvy) —

Jii(z,y)

Harris corner index: H = det(J) — & trace(J)? with

Unser: Image processing
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\/(J22 — J11)2 +4J?

Joo + J11

Jl?(xv y)

k € [0.04,0.15]

J12
J2o
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T,y)
z,y)

Y
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Examples of directional analysis
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Orientation

HSB

RGB

Coherency

“ Hue: orientation
Color HSB Saturation: coherency

representation Brightness: input



Keypoints detector
(Harris Corner)

Distribution of
orientations
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Open-source
software
Plugins of ImageJ
OrientationdJ
Z. PUspoki et al. "Transforms and
Operators for Directional Bioimage
Analysis: A Survey," Advances in

Anatomy, Embryology and Cell Biology,
Springer International Publishing, 2016.


http://bigwww.epfl.ch/publications/puespoeki1603.html
http://bigwww.epfl.ch/publications/puespoeki1603.html
http://bigwww.epfl.ch/publications/puespoeki1603.html

6.3 Steerable filters

= Directional pattern matching
= Steerable filters
= Derivative-based filters

= Appendix: specific implementations
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Directional pattern matching

Task: detection/enhancement of a given type of directional pattern
Example: edge, line, ridge, filament, corner, etc.
m Local measurement model

flxe)=1"- fy (Rg(a: — mo)) + n(x)

= fo(ax) : feature template (elongated blob)
= x( : spatial location (unknown)
= Ry : 2 x 2 rotation matrix by 6 (unknown)

= [: intensity (unknown)

= n(x): additive Gaussian noise

m Maximum-likelihood estimator (rotating matched filter)

~

0(xy) = arg m@ax{(f x h(Ry-)) (xg) } where h(x) = fo(—x)

~

I(xg) = (f * h(Ré-)) (o)

Problem: computationally very expensive!
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Steerable f| Iters (Freeman & Adelson, 1991)

Definition. A 2D filter h(x), x € R? is steerable of order M iff. there exist

some basis filters ©,, (x) and coefficients a.,, (6) such that

M
Vo € [_ﬂ-aﬂ]a h@(iL‘) = h(RQw) — Z am(e) Spm(w)
m=1 a ((9)
Fast filterbank implementation l
— o e R—
f * h@ (:13)
fl@) _ )
Fourier-domain equivalence J our »@l{)

h(x) steerable < h(w) steerable
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Steerable, derivative-based filters

Isotropic lowpass function (e.g., Gaussian): ¢(z1, x2)

Subspace of steerable derivative-based templates:

o™ Basis functions
h(zy,z2) 7 men p(r1,72)

m—n
Oxq"~"0xy

m=0n 7 ] ”
Som,n(x17332)

Expansion coefficients

Justification:  h(w) = @([[w]]) - D D b (wi1)™ " (jws)"

\ . J/

steerable polynomial
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Examples: Basic edge and ridge detectors

m Gradient-based edge detector Cos(f)
hix) = r) = 2@ —| 1= g_ai_'®_
(@) = o1(2) = % o) = | Dules @)
() a sin(f) —»
902<£B> — Oxo l
h(RHCB) — Duegp(w)
= (ug, V) = cos o1 (x) + sin 6 ps(x)
cos? ()
9° ;
m Hessian-based ridge detector d asv? > )—
2 (o 2 cos(0) sin(0)
h(@) = oo (a) = S22 f(x) — V| DL (e =)
N — Wg@ —>®——>
Pij (ZIJ) — #ggj;) sin”(6)
) v
— & [~

h(Rox) = Dy, ¢(x)

= (cos 0)? pag(x) + 2cosOsin @ 11 (x) + (sind)? pga(x)
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Optimized steerable detectors

m Canny-like criterion of optimality

= Reasonable approximation of ideal detector: fo(x,y) = §(y)

= Maximum signal-to-noise ratio

Ridge detectors

= Good spatial localization

= Reduced oscillation

Constrained optimization of o, ; using Lagrange multipliers

a (6
! ( l) 2nd order 4th order

» D1 —>®

— E CLM(Q) >

!

—> PM —>®

0% (x) = arg mHaX {(he = f)(x)} thresholded magnitude

(Jacob et al., IEEE-PAMI, 2004) 6-24
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Appendix: specific implementations

= Edge detector
= Ridge detector
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Edge detector: implementation

m State-of-the-art edge detector

Edge point = local maximum of first directional derivative

7

smoothing
filter

/ Oeq

Steerable filter

——> (Gradient

modulus

phase

m Smoothing

Gaussian filter: isotropic + separable

Implementation: cascade of simple recursive filters

m Gradient

f (k1)

Unser: Image processing
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7

Hysteresis
threshold

/
(ﬂovw Thigh)

Edge map

Vf — (f:cafy)

IVl = /£2 + £2
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Edge detector (Cont’d)

B Non-maximum suppression

A%
Current point: zo = (k, 1) U = \\V§Ei2§!! > unit vector in the direction of the gradient

IV f(@o)ll 2 IV f(xo £ u)||  theng(xo) = [V f(wo)]

else g(xg) =0

m Hysteresis threshold
Set of points: k = (k,1) € Z*

Two auxiliary edge maps: J-

Elow — {k ‘ CZ—110W < g[k] < Thigh} |:>
B B = (k] T < g[k]}

Final edge map:

E ={k € Eiow U Epign | there exits a path that connects k to Ehign }
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Ridge or line detector

m Signature of a ridge point

Strong (negative) response to “steered” ridge detector & weak response in orthogonal direction

(Paz * f)(x) (90513’3/ « f)(x)
(yz * [)(@)  (Pyy * f)(T)

Smoothed Hessian matrix at location x: H =

Steering in the direction u = (cos 0, sin §) (unit vector): D3¢ * f = u'Hu

Extrema values:

u is an eigenvector of H with eigenvalue A

Amin = min {u"Hu} (minimum eigenvalue of H)
|u|l=1 Hu=Xu = det((H-X)=0

Ao = IImI?X {u"Hu} (maximum eigenvalue of H)
ul||=1

m Positive ridge detection

Criterion: Apnin < 0 and Apax =

!

Figure of merit: g() = /| Amin| - /[ Amax — Amin| =~ [Amin| (0N ridge)

Direction perpendicular to the ridge: umin (eigenvector of H corresponding to Ain)
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Ridge detector: implementation

m Canny-inspired ridge detector

Positive ridge point : local minimum of second derivative

:""""-"" f- Figure f

i ' of merit Ridge map
. | smoothing SH. , o mer Hysteresis
5 filter . threshold
/o 0 /
4 (ﬂovw Thigh)

Steerable filter

g(w) — vV ‘)\min‘ . \/|)\max - )\min‘

Eigendecomposition of Hessian matrix —
Umin = (cos@,sin )

m Hessian masks

1 -2 1 1 0 -1 ]

o 1 4 -8 4 o 1 0 0 O
ox2 6 0xOy 2 -2

1 -2 1 -1 0 1

1 4 1]

o 1 2 —8 —2
oy2 6

1 41
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