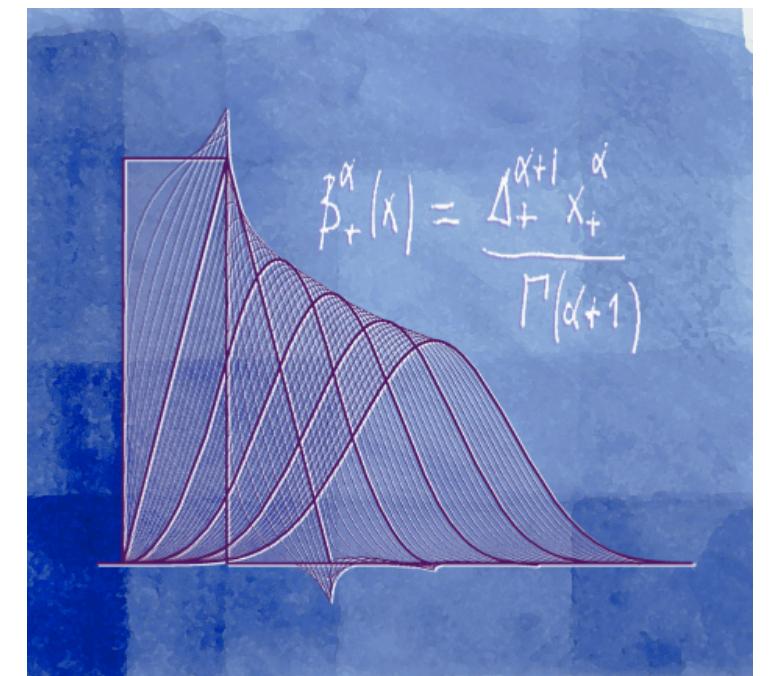


Image Processing

Chapter 6 Directional Image Analysis and Processing

Prof. Michael Unser, LIB



CONTENT

■ 6.1 Mathematical foundations

- Rotation in the Fourier transform
- Radon transform
- Rotation of polynomials
- Directional derivatives

■ 6.2 Local directional analysis

- Structure tensor

 IP-LAB-4

■ 6.3 Steerable filters

- Derivative-based filters

■ Appendix

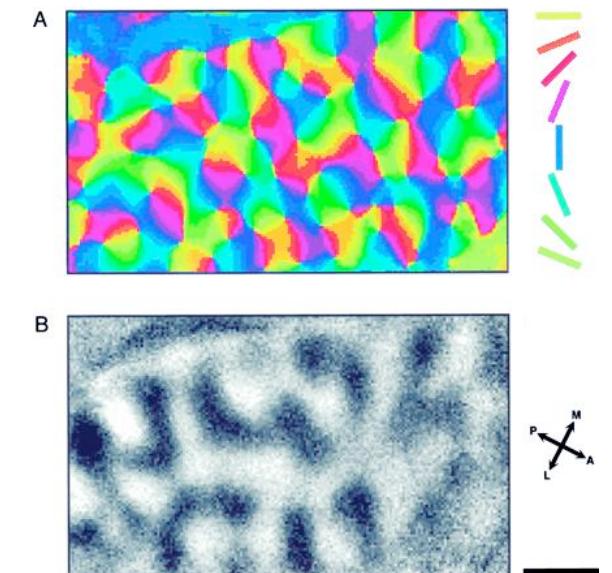
- Edge and ridge detectors

 Demo

Directionality in image processing

■ Importance of directional cues

- Edges, ridges, patterns, texture
- Visual perception is orientation-sensitive
- Organization of primary visual cortex: orientation-selective detectors (Hubel-Wiesel)



■ Invariant processing and feature detection

- Invariant operators: Gradient, Laplacian, ...

■ Computational challenges

- Selectivity to orientation
- Steerability (orientation can be arbitrary)
- Separable filters are not orientation-sensitive

6.1 Mathematical foundations

- Rotation property of the Fourier transform
- Central-slice theorem
- Steerability of polynomials
- Directional derivatives

Rotation in the Fourier domain

Continuous-domain Fourier transform: $\hat{f}(\boldsymbol{\omega}) = \int_{\mathbb{R}^d} f(\mathbf{x}) e^{-j\langle \boldsymbol{\omega}, \mathbf{x} \rangle} dx_1 \cdots dx_d$

■ Rotation property of the Fourier transform

$$f(\mathbf{R}\mathbf{x}) \quad \xleftrightarrow{\mathcal{F}} \quad \hat{f}(\mathbf{R}\boldsymbol{\omega})$$

\mathbf{R} : Orthonormal $d \times d$ matrix such that $\mathbf{R}^{-1} = \mathbf{R}^T$

Example (2×2 rotation matrix): $\mathbf{R}_\theta = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$

Proof (by change of variable): $\mathbf{y} = \mathbf{R}\mathbf{x} \quad \rightarrow \quad dy_1 \cdots dy_d = \underbrace{\det(\mathbf{R})}_{=1} dx_1 \cdots dx_d$

$$\begin{aligned} \int_{\mathbb{R}^d} f(\mathbf{R}\mathbf{x}) e^{-j\langle \boldsymbol{\omega}, \mathbf{x} \rangle} dx_1 \cdots dx_d &= \int_{\mathbb{R}^d} f(\mathbf{y}) e^{-j\langle \boldsymbol{\omega}, \mathbf{R}^T \mathbf{y} \rangle} dy_1 \cdots dy_d \\ &= \int_{\mathbb{R}^d} f(\mathbf{y}) e^{-j\langle \mathbf{R}\boldsymbol{\omega}, \mathbf{y} \rangle} dy_1 \cdots dy_d = \hat{f}(\mathbf{R}\boldsymbol{\omega}) \end{aligned}$$

Central-slice theorem

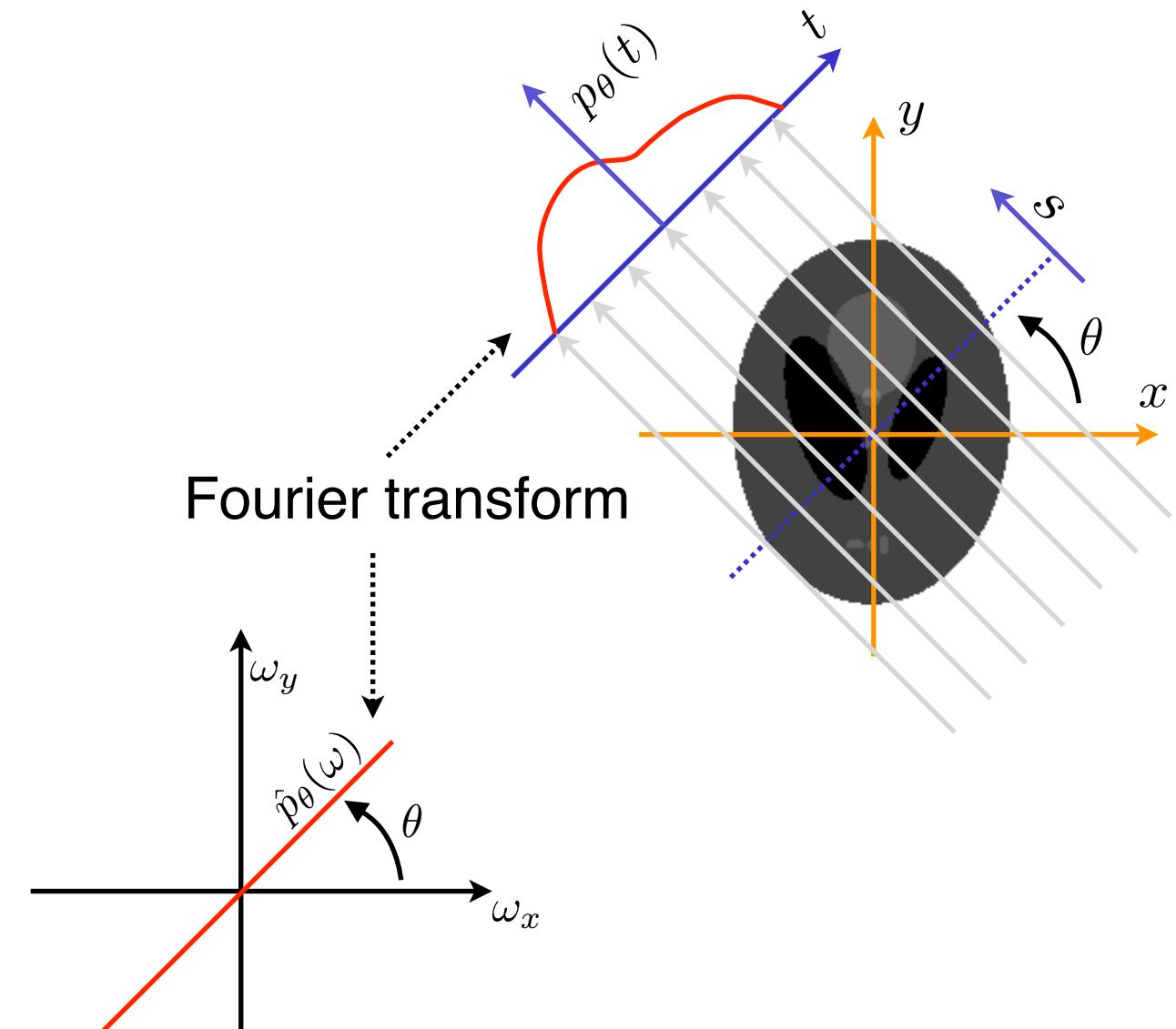
■ Radon transform

$$\begin{aligned} p_\theta(t) &= R \{ f(x, y) \} (t, \theta) \\ &= \int_{-\infty}^{+\infty} f(\underbrace{\mathbf{R}_\theta \mathbf{t}}_{\mathbf{x}=(x,y)}) \, ds \end{aligned}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \mathbf{R}_\theta \mathbf{t} = \underbrace{\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}}_{\mathbf{R}_\theta} \begin{pmatrix} t \\ s \end{pmatrix}$$

■ Central-slice theorem

$$\hat{p}_\theta(\omega) = \hat{f}(\omega \cos \theta, \omega \sin \theta) = \hat{f}_{\text{pol}}(\omega, \theta)$$



Proof: for $\theta = 0$

$$\hat{f}(\omega, 0) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) e^{-j\omega x} \, dx \, dy = \int_{-\infty}^{+\infty} \underbrace{\left(\int_{-\infty}^{+\infty} f(x, y) \, dy \right)}_{p_0(x)} e^{-j\omega x} \, dx = \hat{p}_0(\omega)$$

then use rotation property...

Steerability of polynomials

Property. The rotated version of a multidimensional polynomial of degree p is a polynomial of degree p . This implies that polynomials are “steerable”.

Key observations for establishing rotation property

- A multidimensional polynomial of total degree p is a linear combination of monomials of degree $n \leq p$: $(x_1^{k_1} x_2^{k_2} \cdots x_d^{k_d})$ with $\sum_{i=1}^d k_i = n$
- Applying an affine transformation to a monomial of (total) degree k yields a linear combination of monomials of degree $k = \sum_{i=1}^d l_i$ with $l_i \geq 0$

$$\left(\sum_{i=1}^d a_i x_i \right)^k = \sum_{l_1, l_2, \dots, l_d} \binom{k}{l_1, l_2, \dots, l_d} \left(a_1^{l_1} a_2^{l_2} \cdots a_d^{l_d} \right) x_1^{l_1} x_2^{l_2} \cdots x_d^{l_d}$$

- $(a x_i^{n_1}) \cdot (b x_i^{n_2}) = (ab) x_i^{n_1 + n_2}$

⇒ Overall result of rotation = linear combination of monomials

Reminder: multinomial expansion

- Multinomial coefficients:

$$\binom{n}{k_1, k_2, \dots, k_d} = \frac{n!}{k_1! k_2! \cdots k_d!}$$

with convention that $0! = 1$

- Generalized version of binomial expansion

$$(y_1 + y_2 + \cdots + y_d)^n = \sum_{k_1, k_2, \dots, k_d} \binom{n}{k_1, k_2, \dots, k_d} y_1^{k_1} y_2^{k_2} \cdots y_d^{k_d}$$

with summation over all nonnegative multi-integers such that $\sum_{i=1}^d k_i = n$

Explicit steering of a 2D polynomial (optional)

Rotated polynomial of degree M : $p_\theta(y_1, y_2) = \sum_{m=0}^M \sum_{n=0}^m a_{m,n} y_1^{m-n} y_2^n$

Steering transformation: $y_1 = \cos \theta x_1 - \sin \theta x_2, \quad y_2 = \sin \theta x_1 + \cos \theta x_2$

$$y_1^{m-n} = \sum_{k=0}^{m-n} \binom{m-n}{k} (\cos \theta)^k (-1)^{m-n-k} (\sin \theta)^{m-n-k} x_1^k x_2^{m-n-k}$$

$$y_2^n = \sum_{l=0}^n \binom{n}{l} (\sin \theta)^l (\cos \theta)^{n-l} x_1^l x_2^{n-l}$$

$$p(x_1, x_2) = \sum_{m=0}^M \sum_{n=0}^m a_{m,n} \sum_{k=0}^{m-n} \sum_{l=0}^n \binom{m-n}{k} \binom{n}{l} (\cos \theta)^{k+n-l} (-1)^{m-n-k} (\sin \theta)^{m-n-k+l} x_1^{k+l} x_2^{m-(k+l)}$$

Change of variables: $i - j = k + l; \quad j = m - (k + l)$ and collecting factors

$$\Rightarrow p_\theta(y_1, y_2) = p(x_1, x_2) = \sum_{i=0}^M \sum_{j=0}^i b_{i,j} x_1^{i-j} x_2^j$$

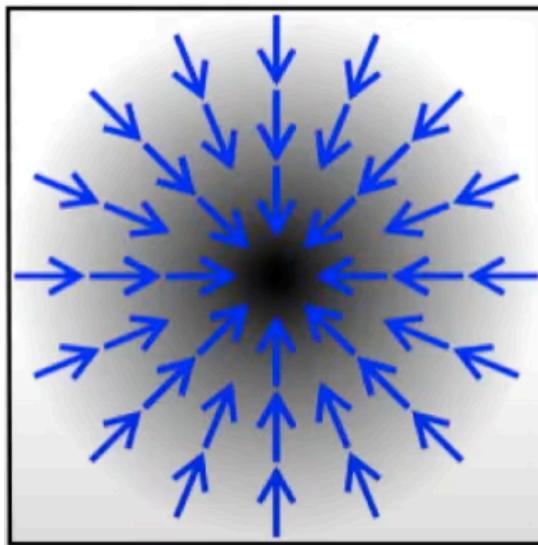
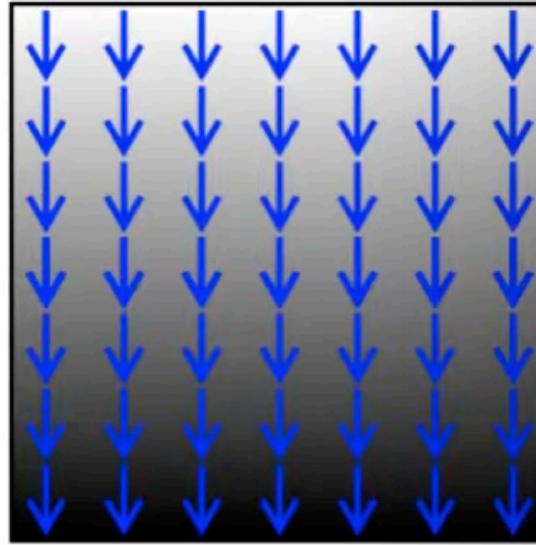
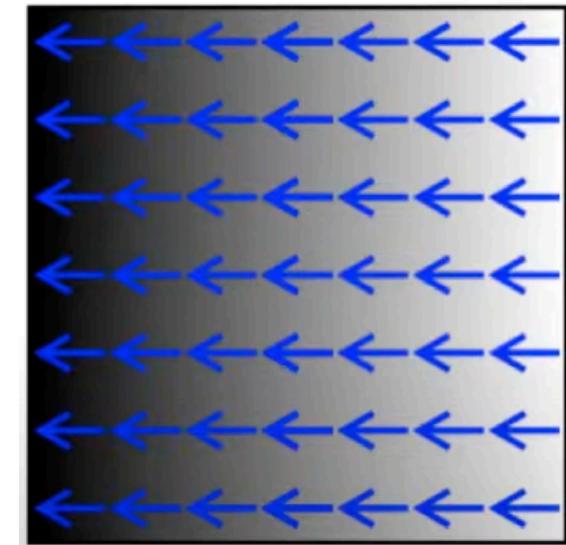
with $b_{i,j} = \text{polynomial}(\cos \theta, \sin \theta)$

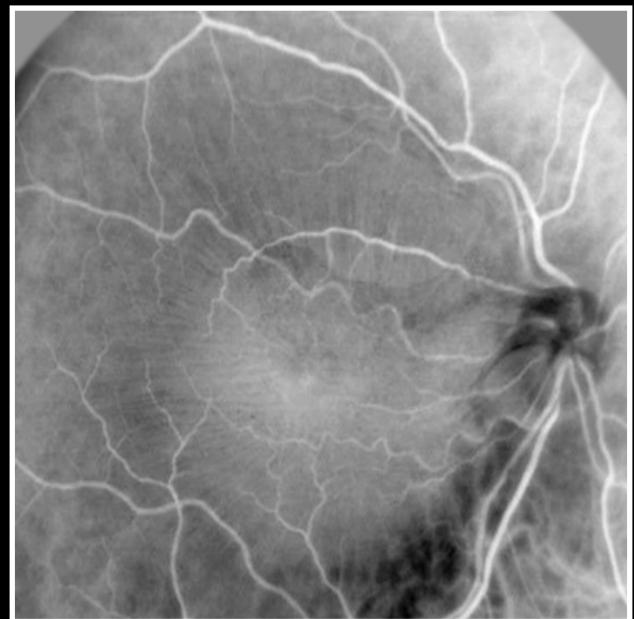
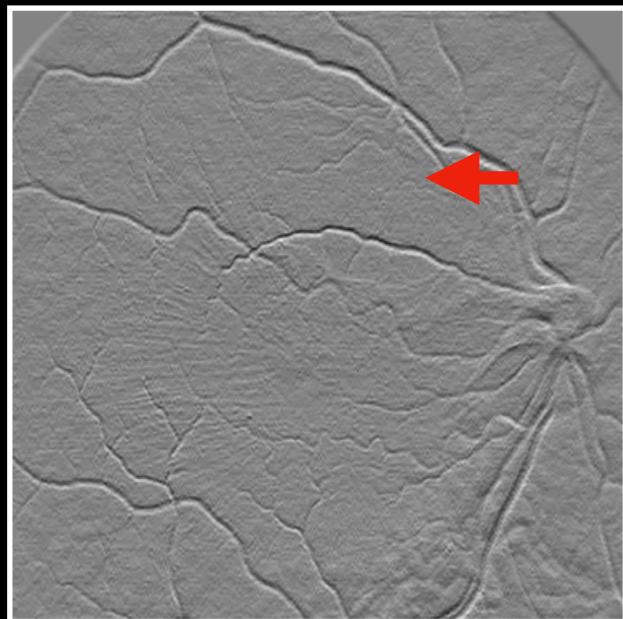
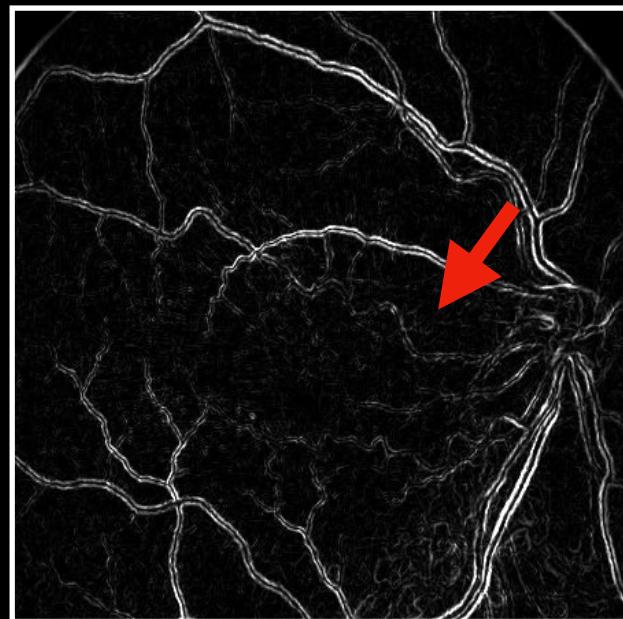
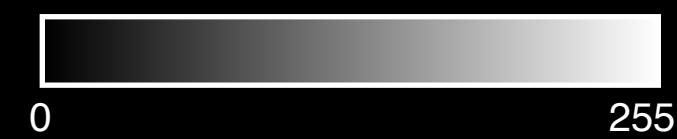
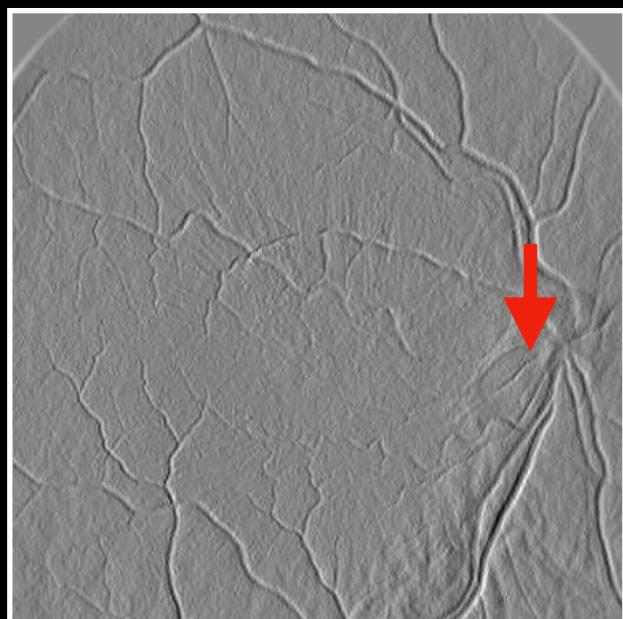
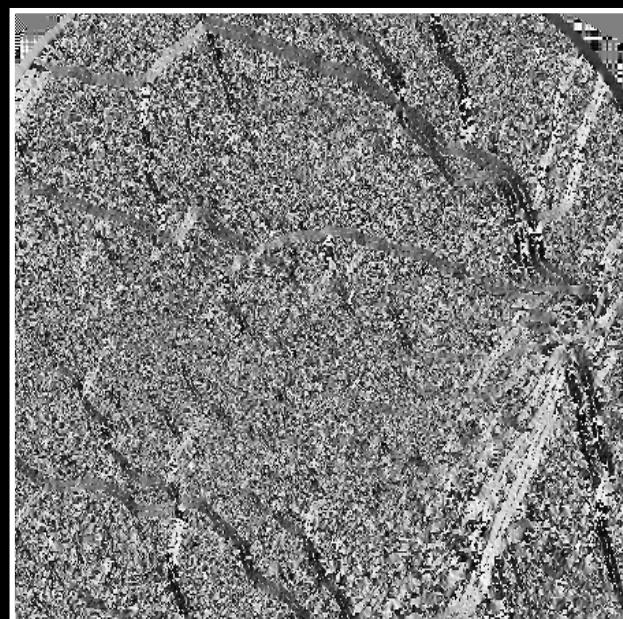
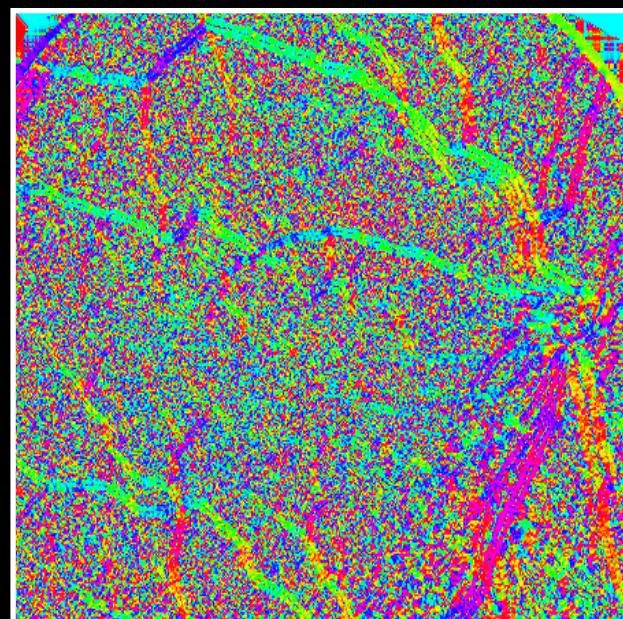
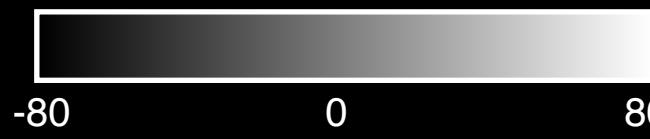
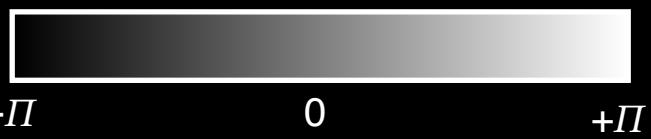
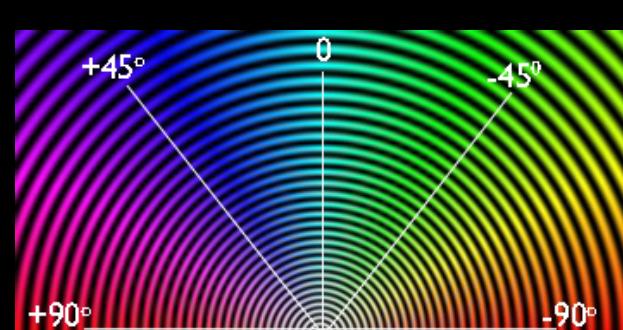
Gradient and directional derivatives

Direction specification: $\mathbf{u} = (u_1, \dots, u_d) \in \mathbb{R}^d$ with $\|\mathbf{u}\| = 1$ (unit vector)

■ First-order directional derivatives

$$\begin{aligned} D_{\mathbf{u}} f(\mathbf{x}) &= \lim_{h \rightarrow 0} \frac{f(\mathbf{x}) - f(\mathbf{x} - h\mathbf{u})}{h} \\ &= \langle \mathbf{u}, \nabla f(\mathbf{x}) \rangle & \xleftarrow{\mathcal{F}} & j \langle \mathbf{u}, \omega \rangle \hat{f}(\omega) \\ &= \sum_{i=1}^d u_i \frac{\partial f(\mathbf{x})}{\partial x_i} & \xleftarrow{\mathcal{F}} & \left(j \sum_{i=1}^d u_i \omega_i \right) \hat{f}(\omega) \end{aligned}$$





Higher-order directional derivatives

Direction specification: $\mathbf{u} = (u_1, \dots, u_d) \in \mathbb{R}^d$ with $\|\mathbf{u}\| = 1$ (unit vector)

■ Directional derivatives of order n

$$\begin{aligned} D_{\mathbf{u}}^n f(\mathbf{x}) &= \underbrace{D_{\mathbf{u}} D_{\mathbf{u}} \cdots D_{\mathbf{u}}}_{n \text{ times}} f(\mathbf{x}) &\longleftrightarrow & \left(j \sum_{i=1}^d u_i \omega_i \right)^n \hat{f}(\boldsymbol{\omega}) \\ &= \sum_{k_1, k_2, \dots, k_d} \binom{n}{k_1, k_2, \dots, k_d} u_1^{k_1} u_2^{k_2} \cdots u_d^{k_d} \frac{\partial^n f(\mathbf{x})}{\partial x_1^{k_1} \partial x_2^{k_2} \cdots \partial x_d^{k_d}} \end{aligned}$$

\Rightarrow linear combination of partial derivatives of order n

■ 2D example: $n = 2$

- Unit vector: $\mathbf{u}_\theta = (\cos \theta, \sin \theta)$
- $D_{\mathbf{u}_\theta}^2 f(x_1, x_2) = \cos^2 \theta \frac{\partial^2 f(x_1, x_2)}{\partial x_1^2} + 2 \cos \theta \sin \theta \frac{\partial^2 f(x_1, x_2)}{\partial x_1 \partial x_2} + \sin^2 \theta \frac{\partial^2 f(x_1, x_2)}{\partial x_2^2}$

6.2 Directional image analysis

- Structure tensor
- Implementation
- Examples of 2D directional analysis

Structure tensor

■ Structure tensor at location \mathbf{x}_0

$$\mathbf{J}(\mathbf{x}_0) = \int_{\mathbb{R}^d} w(\mathbf{x} - \mathbf{x}_0) \left(\nabla f(\mathbf{x}) \nabla^T f(\mathbf{x}) \right) dx_1 \cdots dx_d$$

- $w(\mathbf{x})$: nonnegative symmetric observation window (e.g., Gaussian)
- \mathbf{J} : $d \times d$ symmetric matrix
- Eigenvectors and eigenvalues: $\mathbf{J}\mathbf{u}_i = \lambda_i \cdot \mathbf{u}_i$, with $\lambda_1 \geq \cdots \geq \lambda_d$

■ Interpretation (for window centered at $\mathbf{x}_0 = 0$)

- Weighted differential inner-product matrix: $\mathbf{J} = \langle \nabla f, \nabla f \rangle_w$
 $[\mathbf{J}]_{i,j} = \langle \frac{\partial f}{\partial x_i}, \frac{\partial f}{\partial x_j} \rangle_w$ with $\langle f_1, f_2 \rangle_w = \int_{\mathbb{R}^d} w(\mathbf{x}) f_1(\mathbf{x}) f_2(\mathbf{x}) dx_1 \cdots dx_d$
- Energy of the derivative in the direction \mathbf{u}

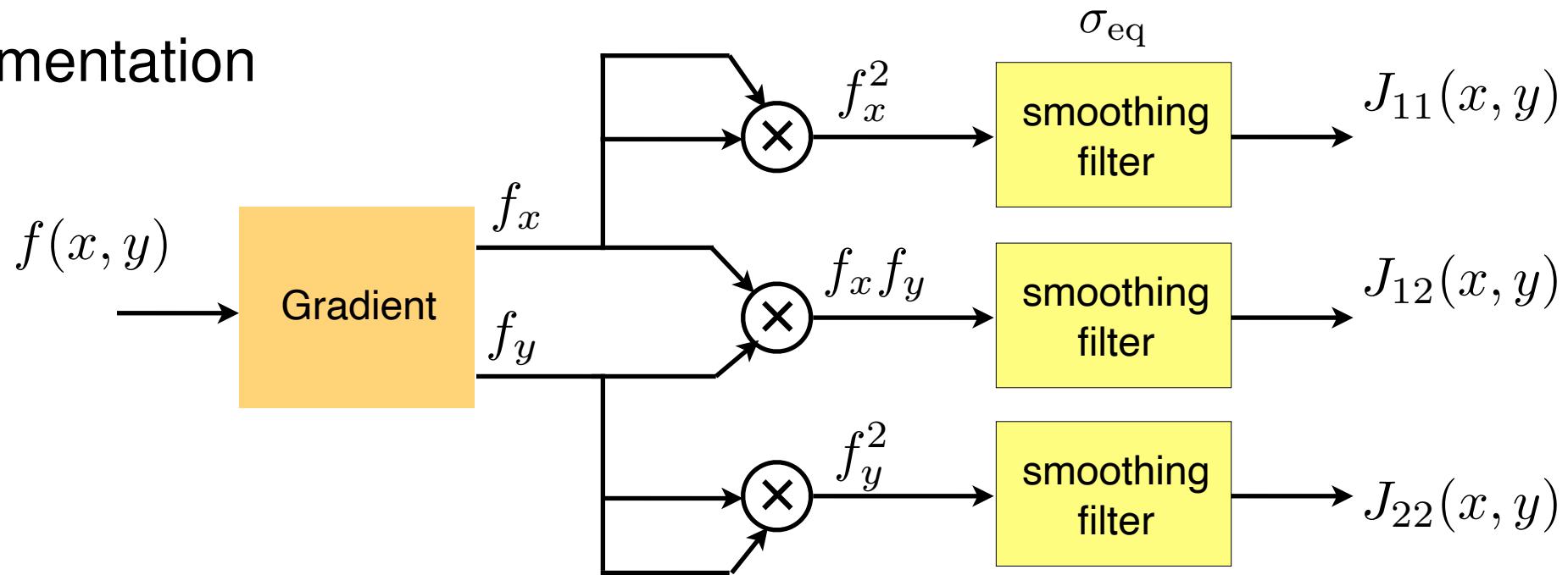
$$\|D_{\mathbf{u}} f\|_w^2 = \langle \mathbf{u}^T \nabla f, \mathbf{u}^T \nabla f \rangle_w = \mathbf{u}^T \langle \nabla f, \nabla f \rangle_w \mathbf{u} = \mathbf{u}^T \mathbf{J} \mathbf{u}$$

- Dominant orientation of neighborhood: $\mathbf{u}_1 = \arg \max_{\mathbf{u}, \|\mathbf{u}\|=1} \|D_{\mathbf{u}} f\|_w^2$

$$\text{Eigenvalues: } \lambda_i = \mathbf{u}_i^T \mathbf{J} \mathbf{u}_i$$

Structure tensor in 2D

■ Implementation

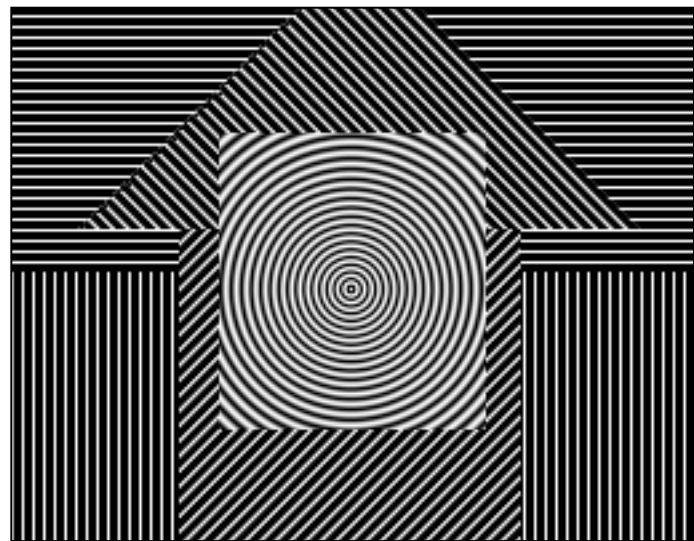


■ Local features

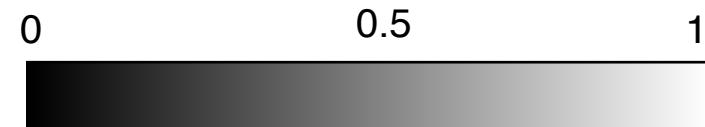
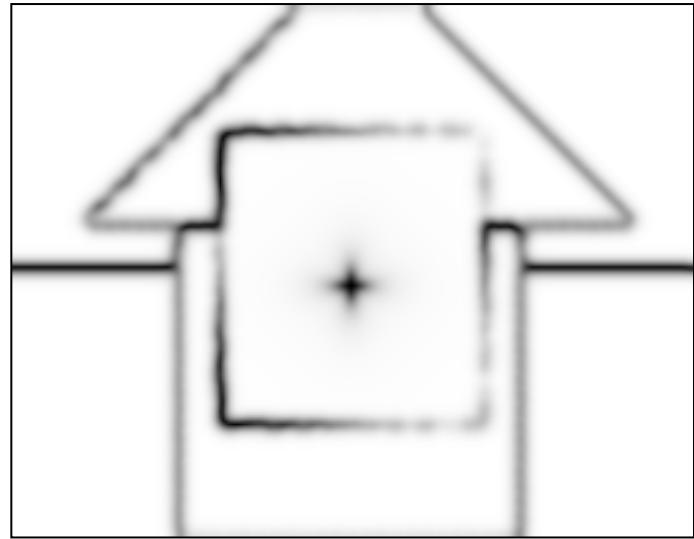
$$\mathbf{J}(x, y) = \begin{bmatrix} J_{11}(x, y) & J_{12}(x, y) \\ J_{12}(x, y) & J_{22}(x, y) \end{bmatrix}$$

- Gradient energy: $E = \text{trace}(\mathbf{J}) = J_{11} + J_{22}$
- Orientation: $\mathbf{u}_1 = (\cos \theta, \sin \theta)$ with $\theta = \frac{1}{2} \arctan \left(\frac{2J_{12}}{J_{22} - J_{11}} \right)$
- Coherency: $0 \leq C = \frac{\lambda_{\max} - \lambda_{\min}}{\lambda_{\max} + \lambda_{\min}} = \frac{\sqrt{(J_{22} - J_{11})^2 + 4J_{12}^2}}{J_{22} + J_{11}} \leq 1$
- Harris corner index: $H = \det(\mathbf{J}) - \kappa \text{trace}(\mathbf{J})^2$ with $\kappa \in [0.04, 0.15]$

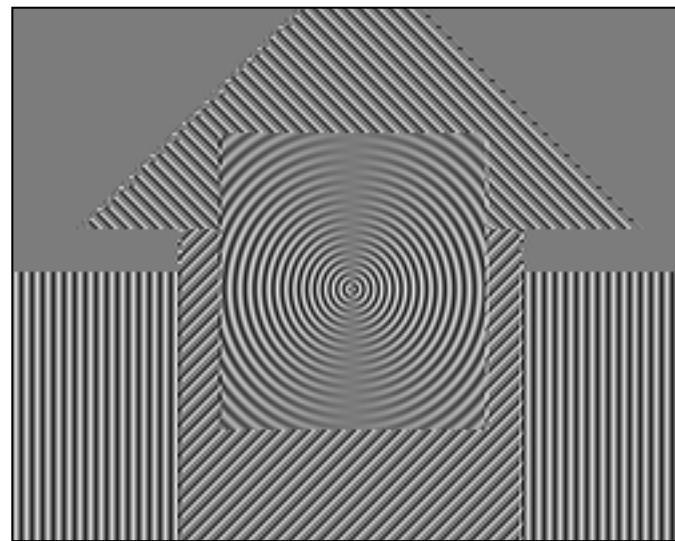
Examples of directional analysis



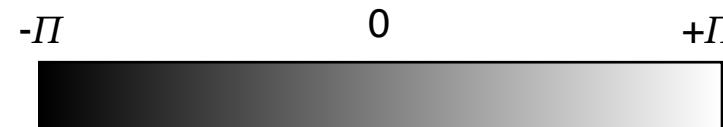
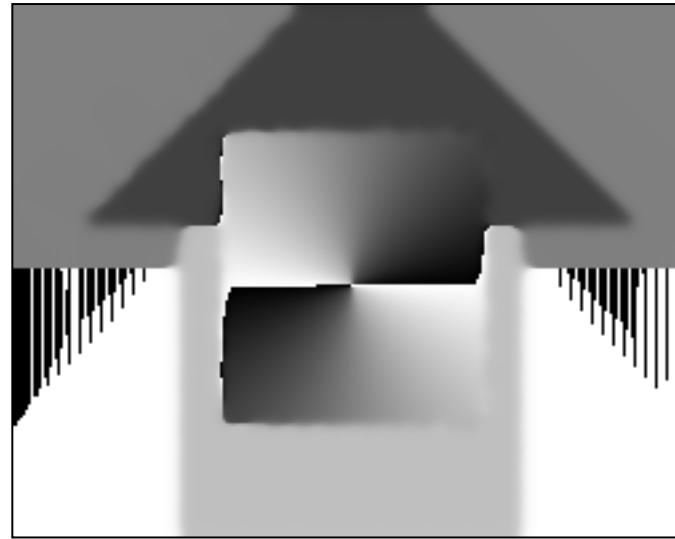
Input



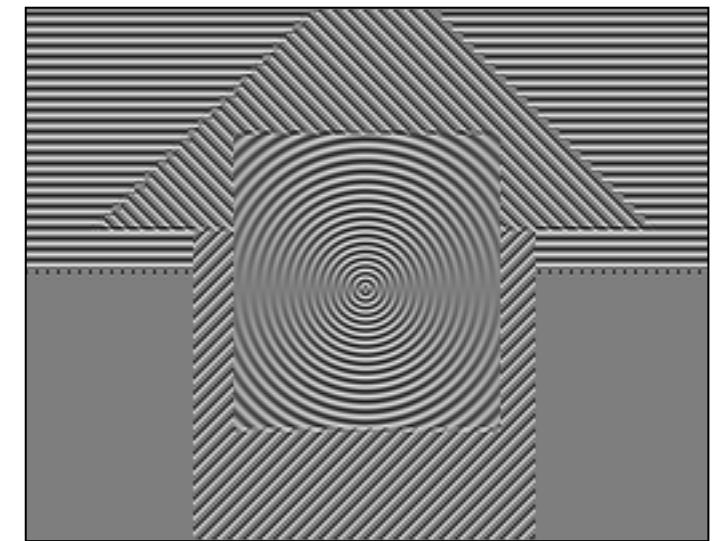
Coherency



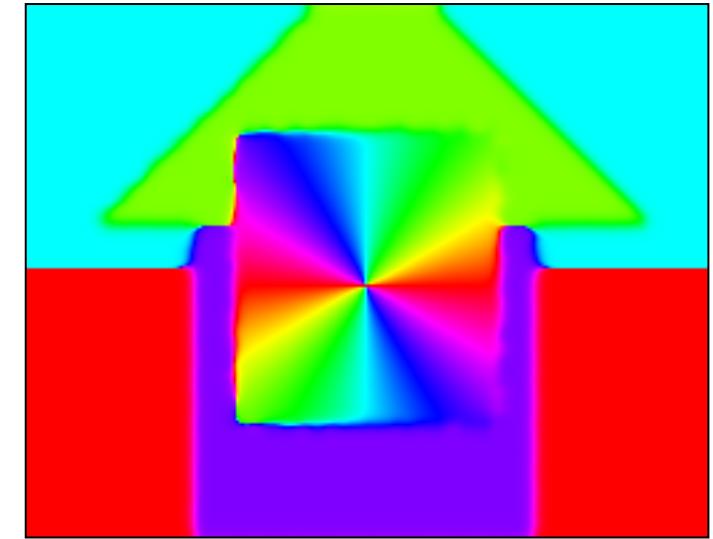
Dx



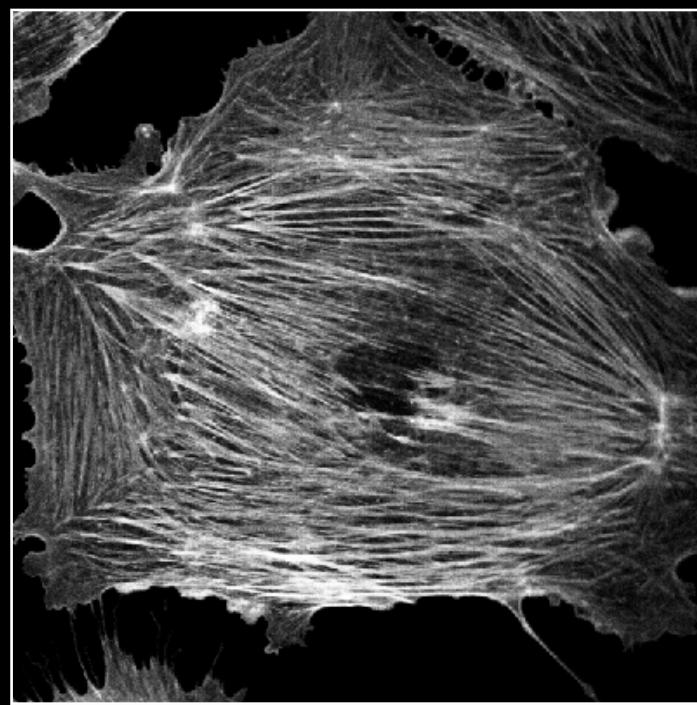
Orientation



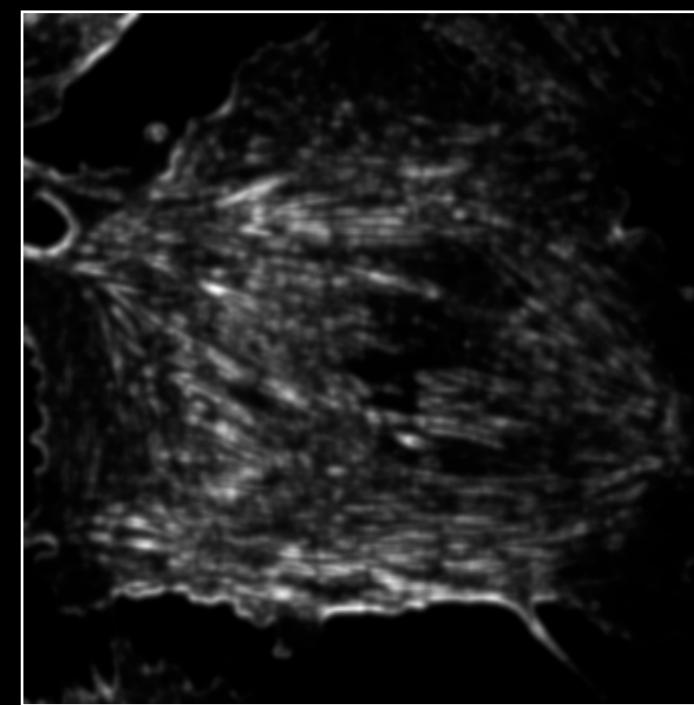
Dy



Orientation

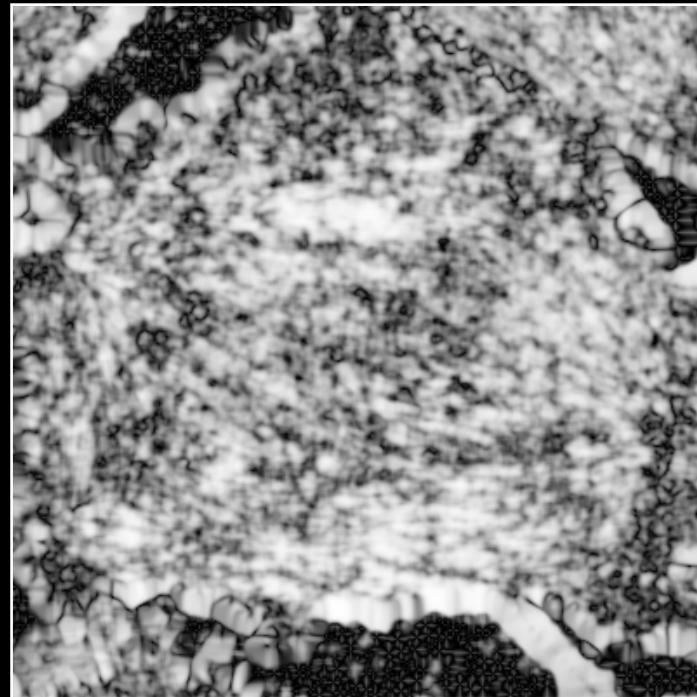


Input

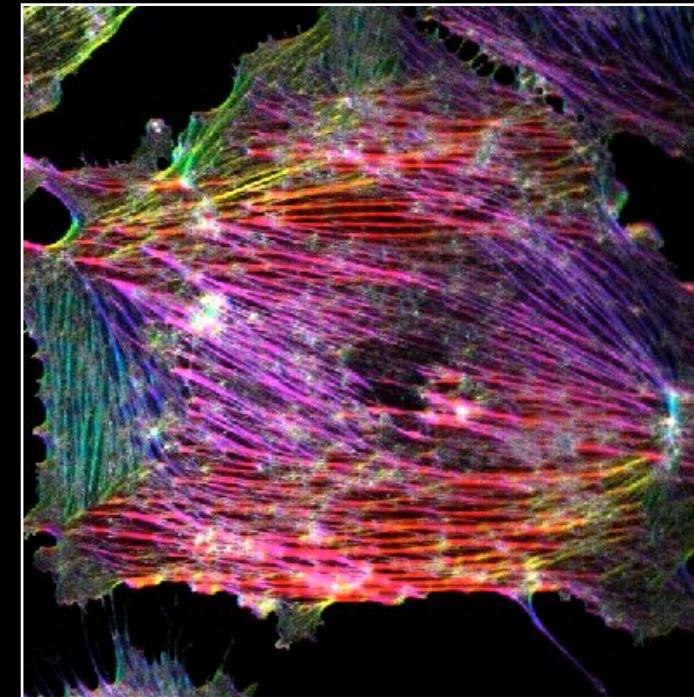


Energy

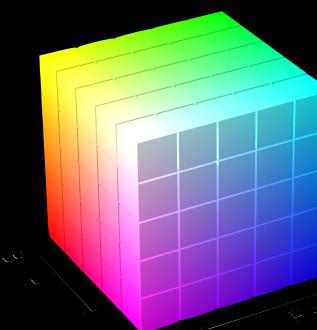
Orientation



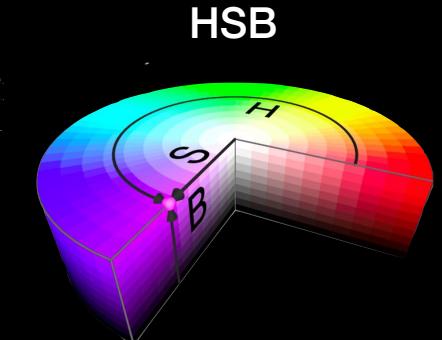
Coherency



Color HSB
representation

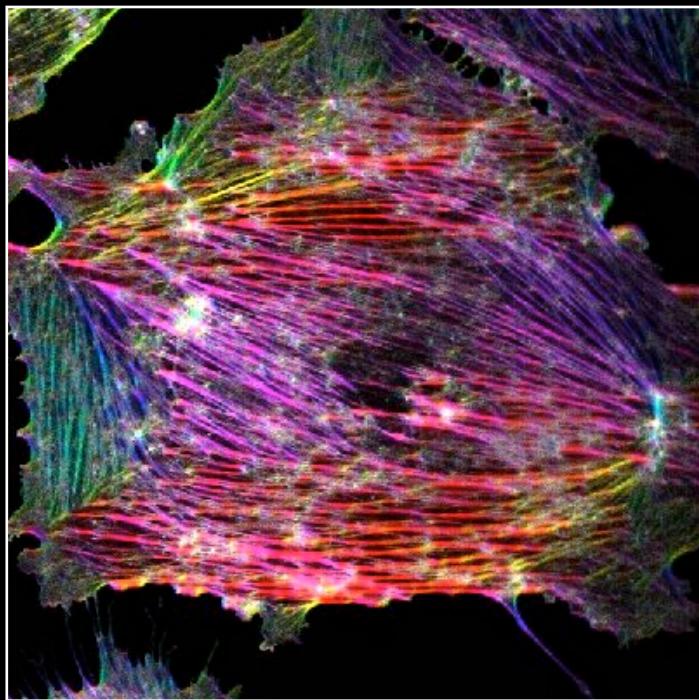


RGB

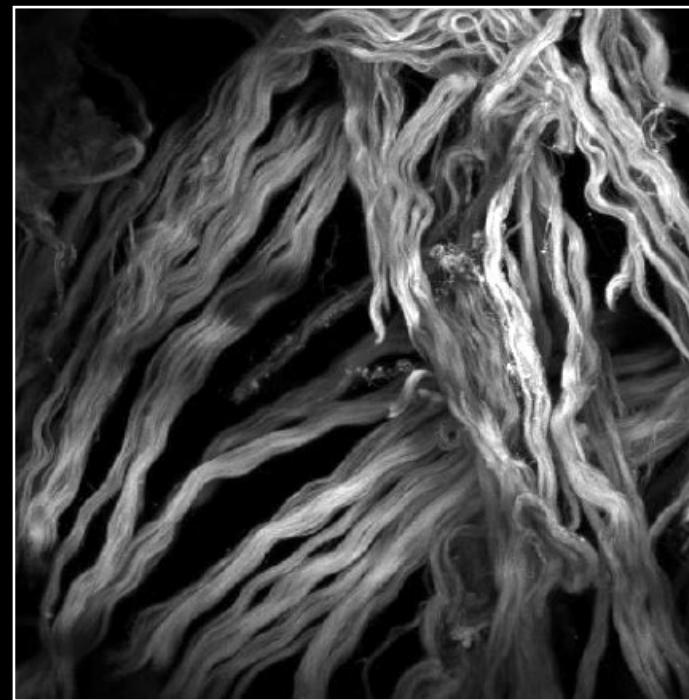


HSB

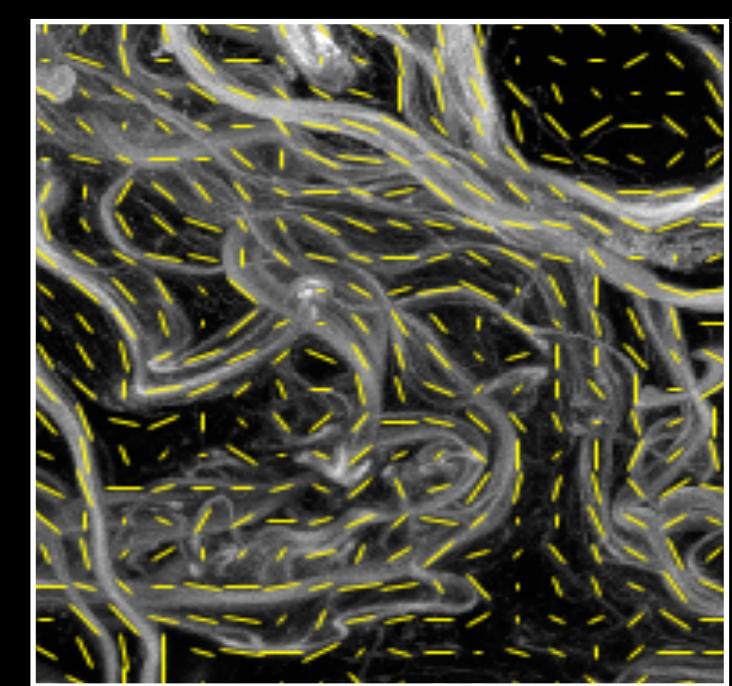
Hue: orientation
Saturation: coherency
Brightness: input



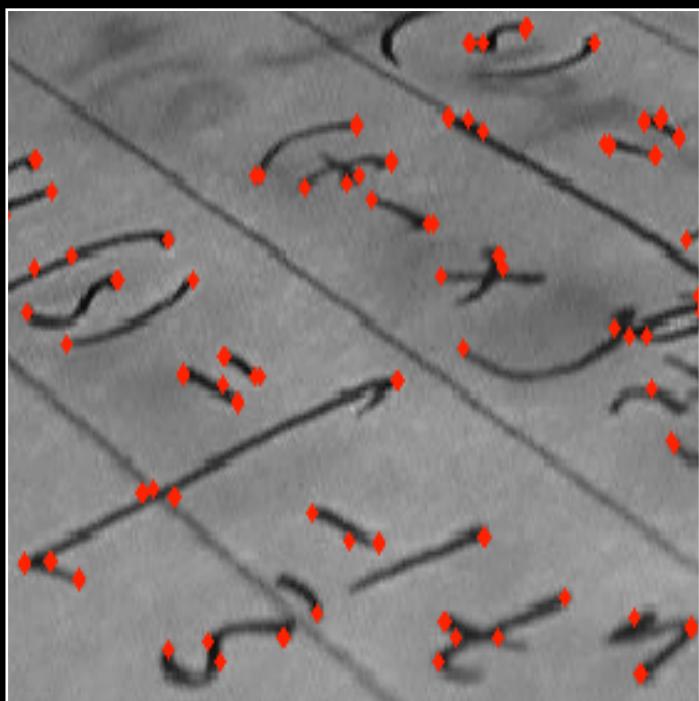
Directional Analysis



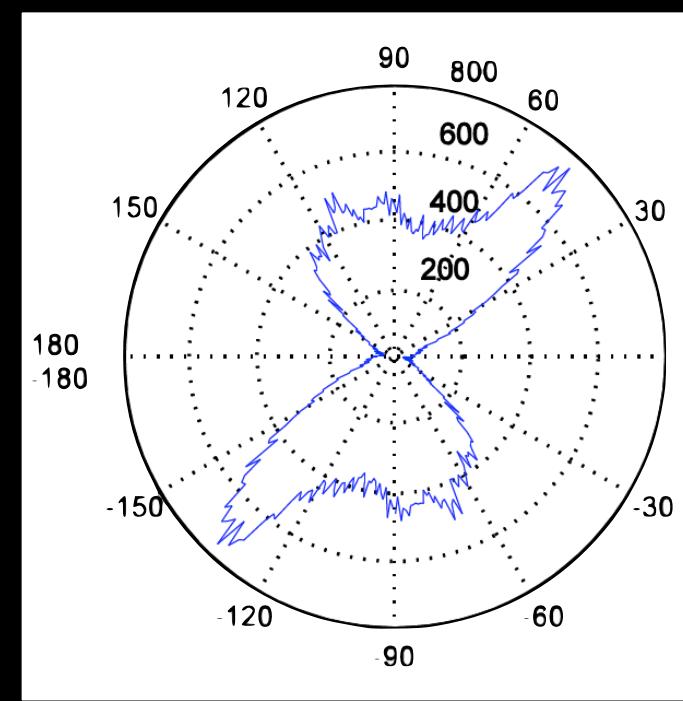
Distribution of orientations



Vector Field



Keypoints detector
(Harris Corner)



Open-source
software
Plugins of ImageJ
OrientationJ

Z. Püspöki et al. "Transforms and Operators for Directional Bioimage Analysis: A Survey," Advances in Anatomy, Embryology and Cell Biology, Springer International Publishing, 2016.

6.3 Steerable filters

- Directional pattern matching
- Steerable filters
- Derivative-based filters
- Appendix: specific implementations

Directional pattern matching

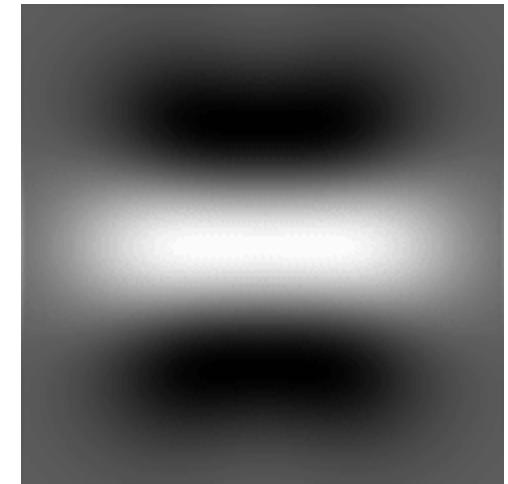
Task: detection/enhancement of a given type of directional pattern

Example: edge, line, ridge, filament, corner, etc.

■ Local measurement model

$$f(\mathbf{x}) = I \cdot f_0(\mathbf{R}_\theta(\mathbf{x} - \mathbf{x}_0)) + n(\mathbf{x})$$

- $f_0(\mathbf{x})$: feature template (elongated blob)
- \mathbf{x}_0 : spatial location (unknown)
- \mathbf{R}_θ : 2×2 rotation matrix by θ (unknown)
- I : intensity (unknown)
- $n(\mathbf{x})$: additive Gaussian noise



■ Maximum-likelihood estimator (rotating matched filter)

$$\tilde{\theta}(\mathbf{x}_0) = \arg \max_{\theta} \{(f * h(\mathbf{R}_\theta \cdot))(x_0)\} \quad \text{where } h(\mathbf{x}) = f_0(-\mathbf{x})$$

$$\tilde{I}(\mathbf{x}_0) = (f * h(\mathbf{R}_{\tilde{\theta}} \cdot))(x_0)$$

Problem: computationally very expensive!

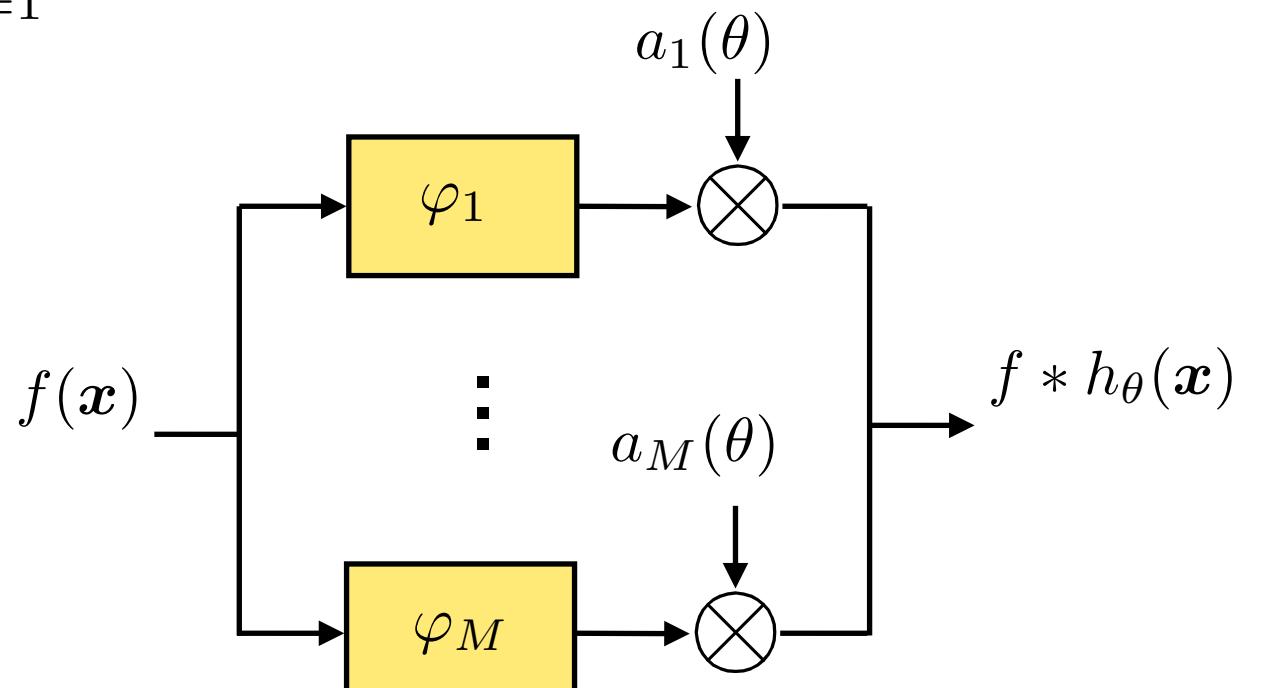
Steerable filters

(Freeman & Adelson, 1991)

Definition. A 2D filter $h(\mathbf{x})$, $\mathbf{x} \in \mathbb{R}^2$ is steerable of order M iff. there exist some basis filters $\varphi_m(\mathbf{x})$ and coefficients $a_m(\theta)$ such that

$$\forall \theta \in [-\pi, \pi], \quad h_\theta(\mathbf{x}) := h(\mathbf{R}_\theta \mathbf{x}) = \sum_{m=1}^M a_m(\theta) \varphi_m(\mathbf{x})$$

- Fast filterbank implementation



- Fourier-domain equivalence

$h(\mathbf{x})$ steerable $\Leftrightarrow \hat{h}(\omega)$ steerable

Steerable, derivative-based filters

Isotropic lowpass function (e.g., Gaussian): $\varphi(x_1, x_2)$

Subspace of steerable derivative-based templates:

$$h(x_1, x_2) = \sum_{m=0}^M \sum_{n=0}^m b_{m,n} \underbrace{\frac{\partial^m}{\partial x_1^{m-n} \partial x_2^n} \varphi(x_1, x_2)}_{\varphi_{m,n}(x_1, x_2)}$$

Expansion coefficients

Basis functions

Proposition. $h(x_1, x_2)$ is steerable in the sense that

$$(f * h(\mathbf{R}_\theta \cdot))(x) = \sum_{m=0}^M \sum_{n=0}^m a_{m,n}(\theta) f_{m,n}(x)$$

where $f_{m,n}(x) = \left(f * \frac{\partial^m}{\partial x_1^{m-n} \partial x_2^n} \varphi \right)(x)$ and $a_{m,n}(\theta) = \text{poly}(\cos \theta, \sin \theta)$.

Justification: $\hat{h}(\omega) = \hat{\varphi}(\|\omega\|) \cdot \underbrace{\sum_{m=0}^M \sum_{n=0}^m b_{m,n} (j\omega_1)^{m-n} (j\omega_2)^n}_{\text{steerable polynomial}}$

Examples: Basic edge and ridge detectors

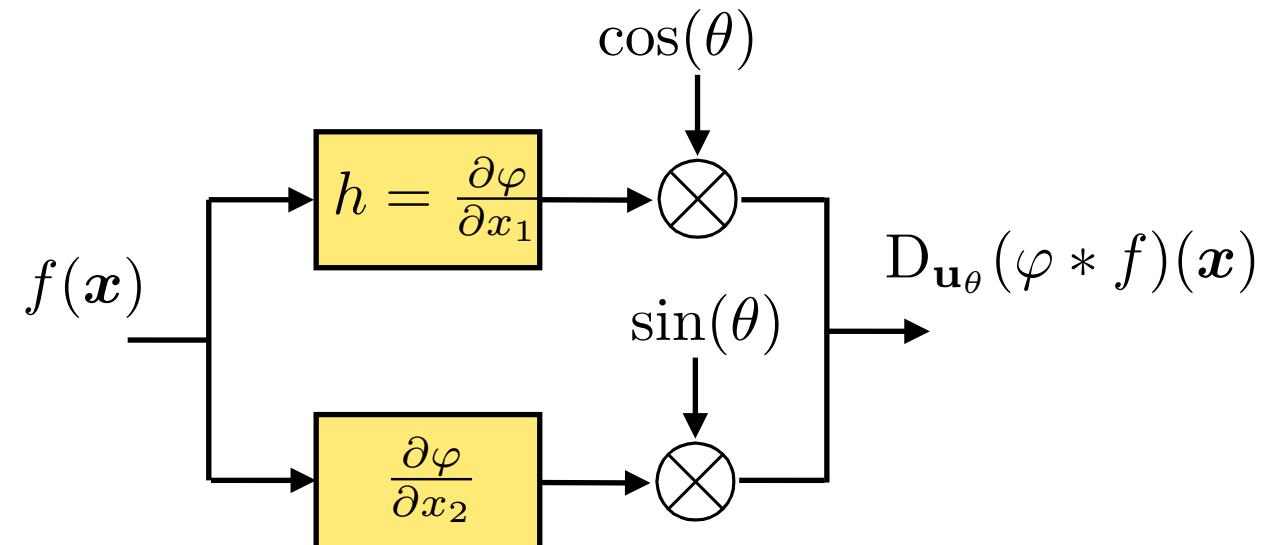
■ Gradient-based edge detector

$$h(\mathbf{x}) = \varphi_1(\mathbf{x}) = \frac{\partial \varphi(\mathbf{x})}{\partial x_1}$$

$$\varphi_2(\mathbf{x}) = \frac{\partial \varphi(\mathbf{x})}{\partial x_2}$$

$$h(\mathbf{R}_\theta \mathbf{x}) = D_{\mathbf{u}_\theta} \varphi(\mathbf{x})$$

$$= \langle \mathbf{u}_\theta, \nabla \varphi \rangle = \cos \theta \varphi_1(\mathbf{x}) + \sin \theta \varphi_2(\mathbf{x})$$



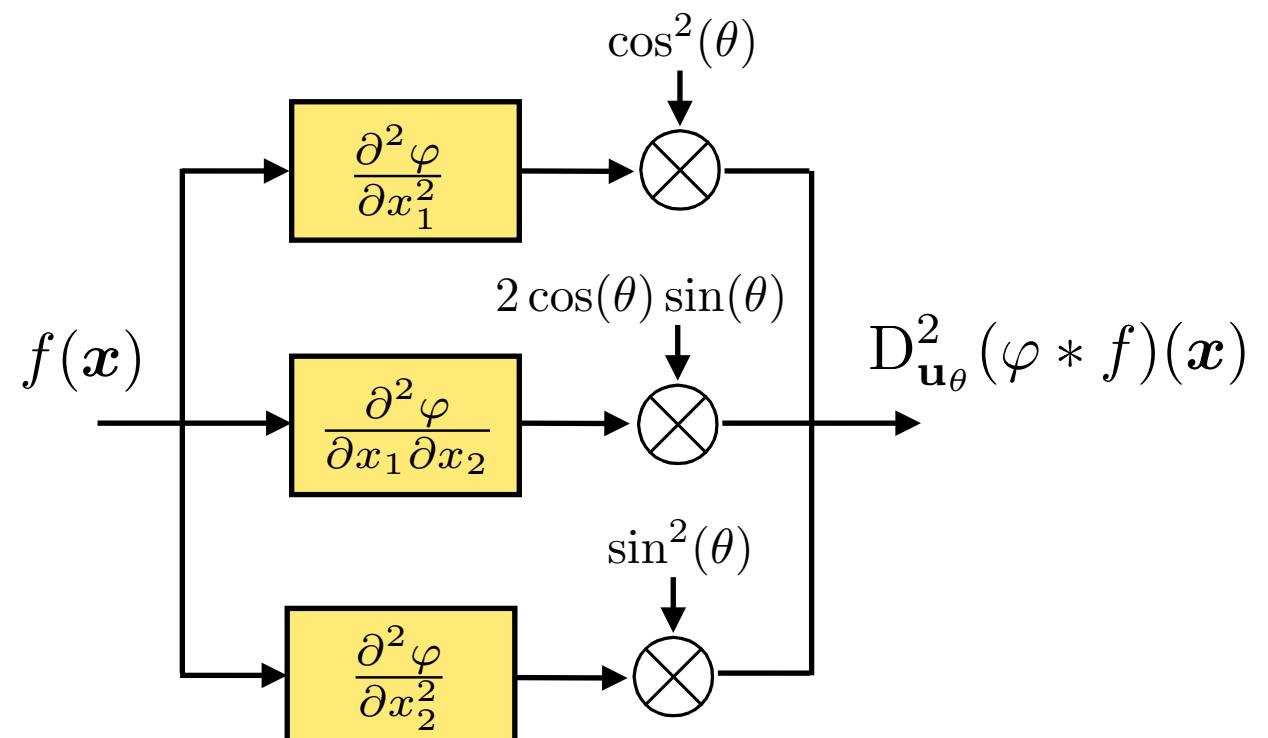
■ Hessian-based ridge detector

$$h(\mathbf{x}) = \varphi_{20}(\mathbf{x}) = \frac{\partial^2 \varphi(\mathbf{x})}{\partial x_1^2}$$

$$\varphi_{ij}(\mathbf{x}) = \frac{\partial^2 \varphi(\mathbf{x})}{\partial x_i \partial x_j}$$

$$h(\mathbf{R}_\theta \mathbf{x}) = D_{\mathbf{u}_\theta}^2 \varphi(\mathbf{x})$$

$$= (\cos \theta)^2 \varphi_{20}(\mathbf{x}) + 2 \cos \theta \sin \theta \varphi_{11}(\mathbf{x}) + (\sin \theta)^2 \varphi_{02}(\mathbf{x})$$

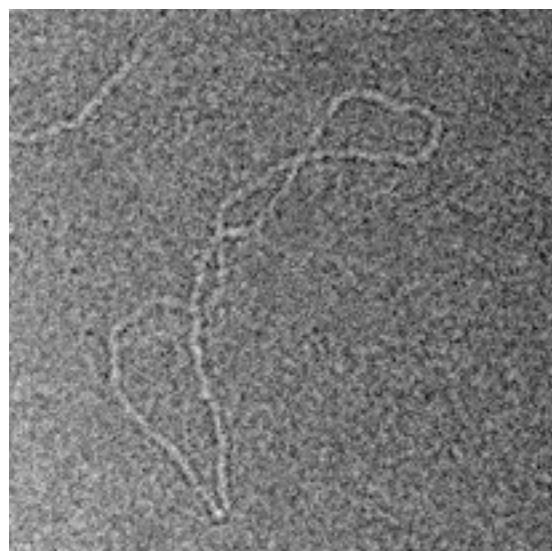
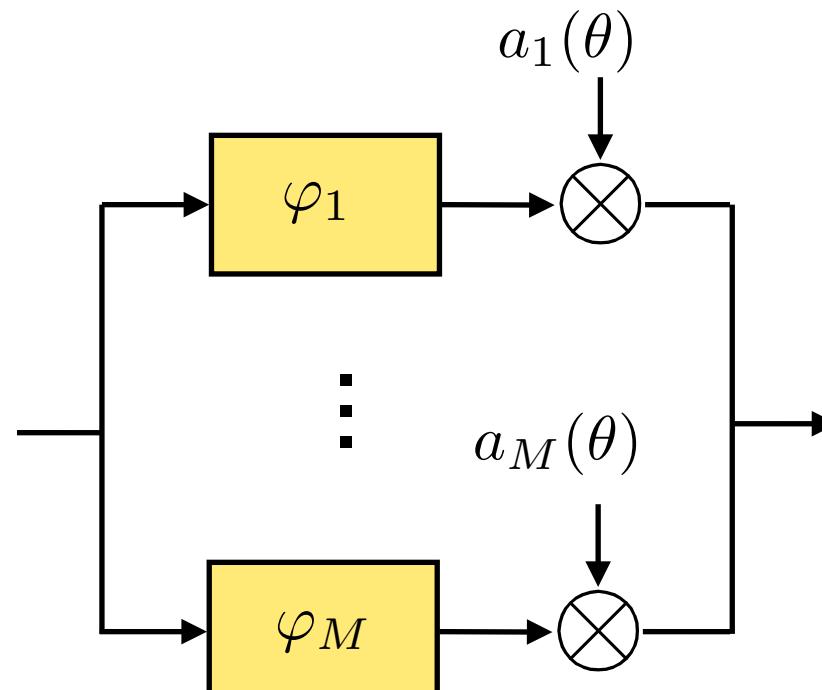


Optimized steerable detectors

■ Canny-like criterion of optimality

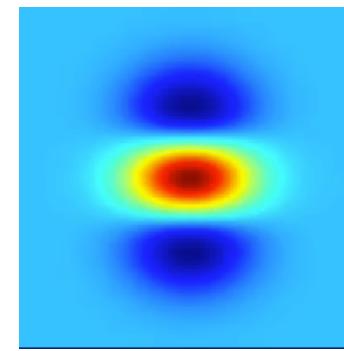
- Reasonable approximation of ideal detector: $f_0(x, y) = \delta(y)$
- Maximum signal-to-noise ratio
- Good spatial localization
- Reduced oscillation

Constrained optimization of $\alpha_{k,i}$ using Lagrange multipliers

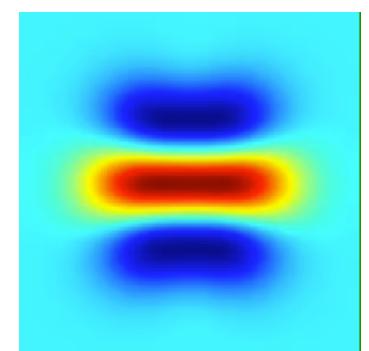


$$\theta^*(x) = \arg \max_{\theta} \{(h_{\theta} * f)(x)\}$$

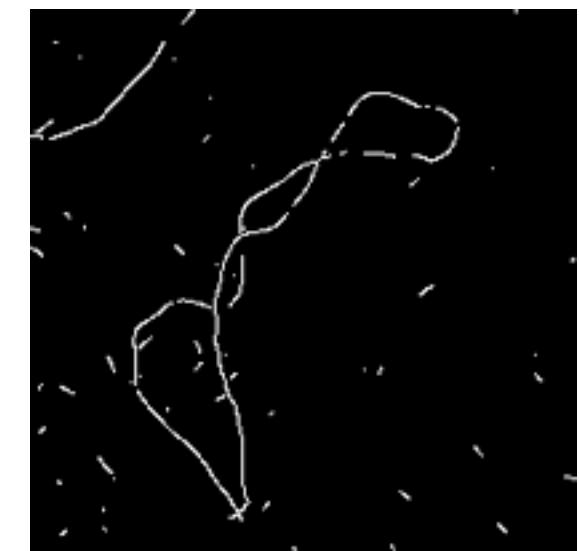
Ridge detectors



2nd order



4th order



thresholded magnitude

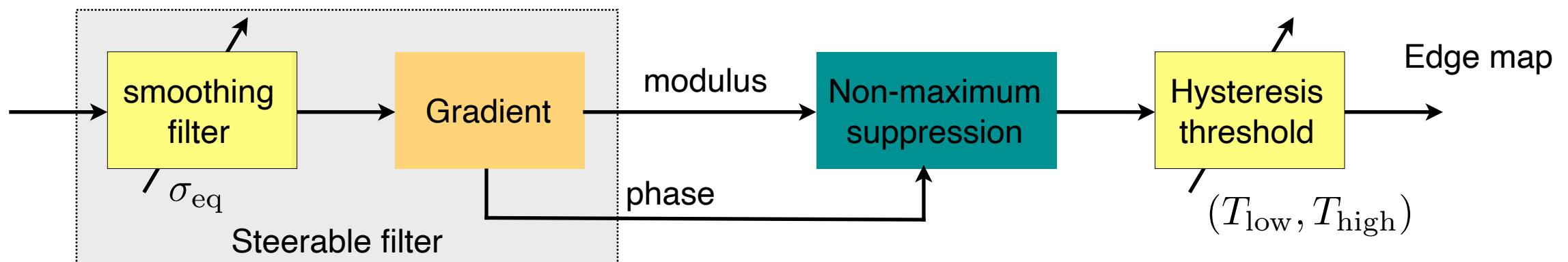
Appendix: specific implementations

- Edge detector
- Ridge detector

Edge detector: implementation

■ State-of-the-art edge detector

Edge point = local maximum of first directional derivative

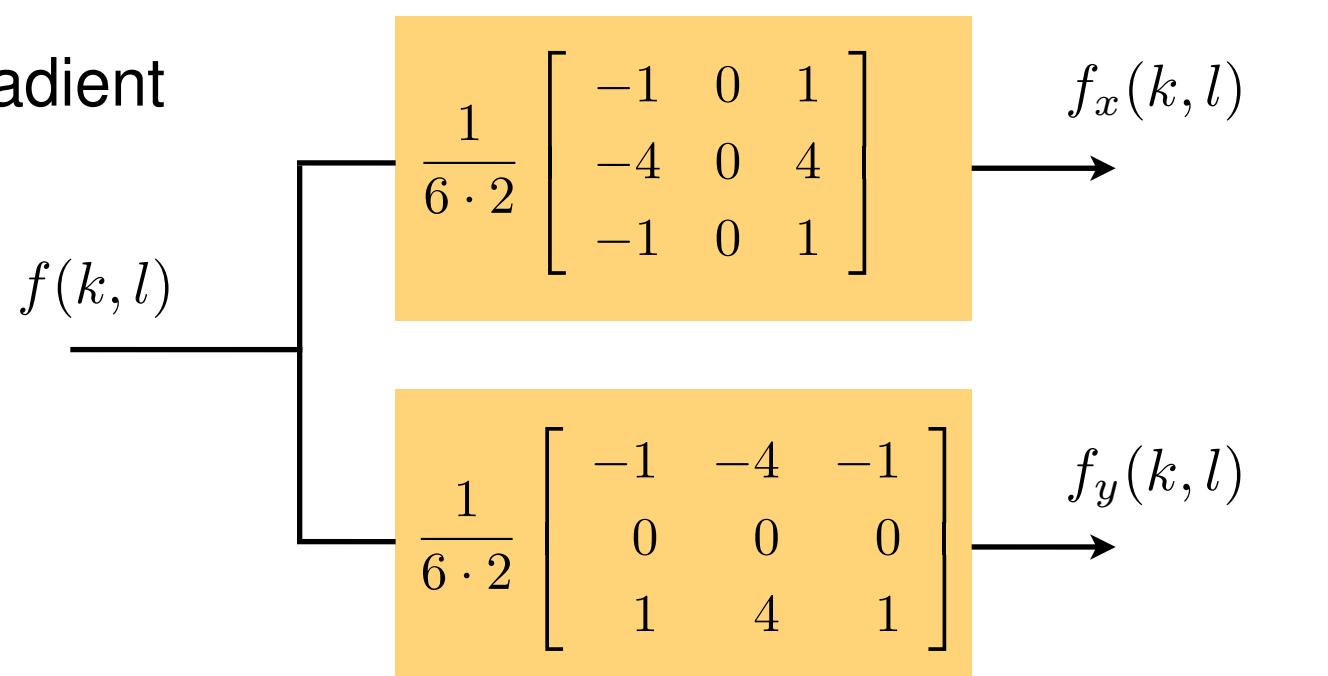


■ Smoothing

Gaussian filter: isotropic + separable

Implementation: cascade of simple recursive filters

■ Gradient



$$\nabla f = (f_x, f_y)$$

$$\|\nabla f\| = \sqrt{f_x^2 + f_y^2}$$

Edge detector (Cont'd)

■ Non-maximum suppression

Current point: $\mathbf{x}_0 = (k, l)$

$\mathbf{u} = \frac{\nabla f(\mathbf{x}_0)}{\|\nabla f(\mathbf{x}_0)\|}$: unit vector in the direction of the gradient

```
If  $\|\nabla f(\mathbf{x}_0)\| \geq \|\nabla f(\mathbf{x}_0 \pm \mathbf{u})\|$  then  $g(\mathbf{x}_0) = \|\nabla f(\mathbf{x}_0)\|$   
else  $g(\mathbf{x}_0) = 0$ 
```

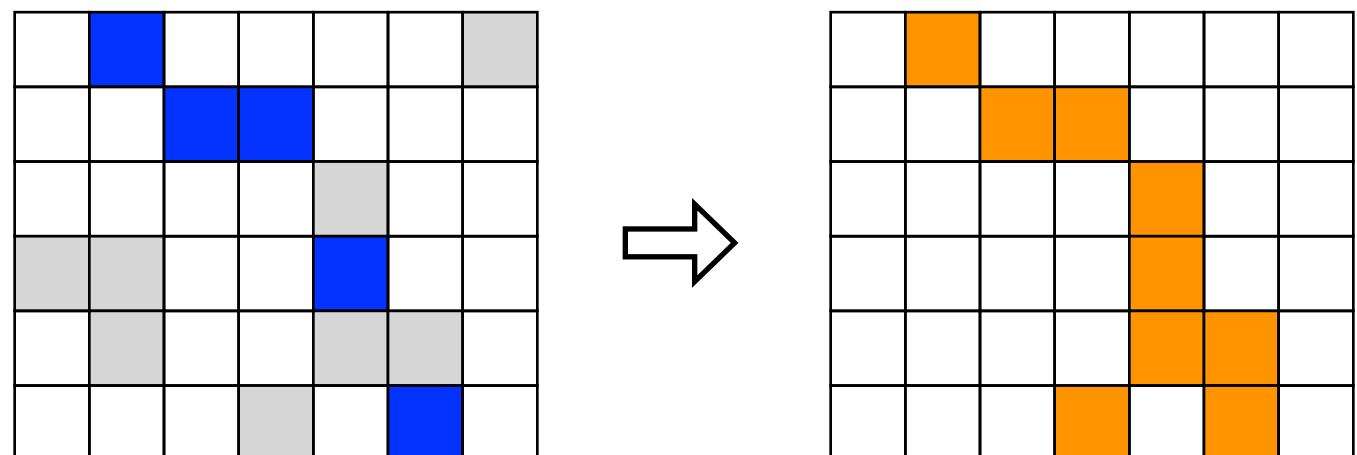
■ Hysteresis threshold

Set of points: $\mathbf{k} = (k, l) \in \mathbb{Z}^2$

Two auxiliary edge maps:

 $E_{\text{low}} = \{\mathbf{k} \mid T_{\text{low}} \leq g[\mathbf{k}] < T_{\text{high}}\}$

 $E_{\text{high}} = \{\mathbf{k} \mid T_{\text{high}} \leq g[\mathbf{k}]\}$



Final edge map:

 $E = \{\mathbf{k} \in E_{\text{low}} \cup E_{\text{high}} \mid \text{there exists a path that connects } \mathbf{k} \text{ to } E_{\text{high}}\}$

Ridge or line detector

■ Signature of a ridge point

Strong (negative) response to “steered” ridge detector & weak response in orthogonal direction

Smoothed Hessian matrix at location x : $\mathbf{H} = \begin{bmatrix} (\varphi_{xx} * f)(x) & (\varphi_{xy} * f)(x) \\ (\varphi_{yx} * f)(x) & (\varphi_{yy} * f)(x) \end{bmatrix}$

Steering in the direction $\mathbf{u} = (\cos \theta, \sin \theta)$ (unit vector): $D_{\mathbf{u}}^2 \varphi * f = \mathbf{u}^T \mathbf{H} \mathbf{u}$

Extrema values:

$$\lambda_{\max} = \max_{\|\mathbf{u}\|=1} \{ \mathbf{u}^T \mathbf{H} \mathbf{u} \} \text{ (maximum eigenvalue of } \mathbf{H} \text{)}$$

$$\lambda_{\min} = \min_{\|\mathbf{u}\|=1} \{ \mathbf{u}^T \mathbf{H} \mathbf{u} \} \text{ (minimum eigenvalue of } \mathbf{H} \text{)}$$

\mathbf{u} is an eigenvector of \mathbf{H} with eigenvalue λ
 \Updownarrow
 $\mathbf{H}\mathbf{u} = \lambda\mathbf{u} \quad \Rightarrow \quad \det(\mathbf{H} - \lambda\mathbf{I}) = 0$

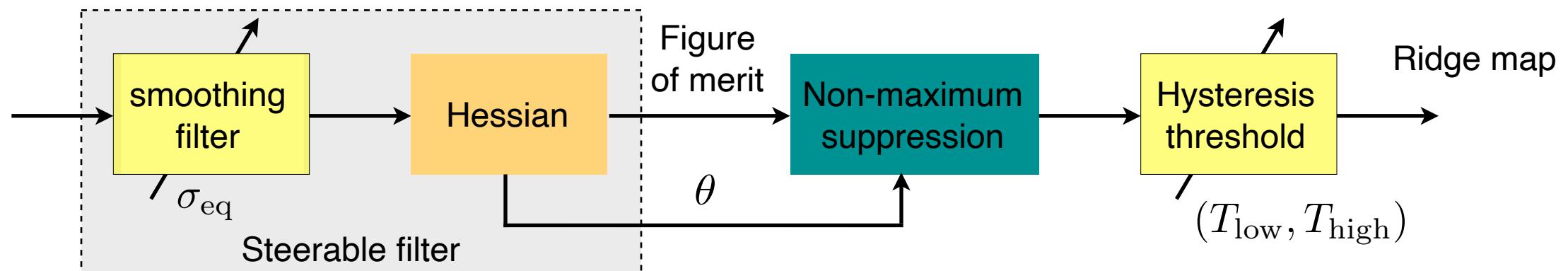
■ Positive ridge detection

- Criterion: $\lambda_{\min} \ll 0$ and $\lambda_{\max} \approx 0$
- Figure of merit: $g(x) = \sqrt{|\lambda_{\min}|} \cdot \sqrt{|\lambda_{\max} - \lambda_{\min}|} \approx |\lambda_{\min}|$ (on ridge)
- Direction perpendicular to the ridge: \mathbf{u}_{\min} (eigenvector of \mathbf{H} corresponding to λ_{\min})

Ridge detector: implementation

■ Canny-inspired ridge detector

Positive ridge point : local minimum of second derivative



Eigendecomposition of Hessian matrix \implies

$$g(\mathbf{x}) = \sqrt{|\lambda_{\min}|} \cdot \sqrt{|\lambda_{\max} - \lambda_{\min}|}$$
$$\mathbf{u}_{\min} = (\cos \theta, \sin \theta)$$

■ Hessian masks

$$\frac{\partial^2}{\partial x^2} : \frac{1}{6} \begin{bmatrix} 1 & -2 & 1 \\ 4 & -8 & 4 \\ 1 & -2 & 1 \end{bmatrix}$$

$$\frac{\partial^2}{\partial x \partial y} : \frac{1}{2 \cdot 2} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$

$$\frac{\partial^2}{\partial y^2} : \frac{1}{6} \begin{bmatrix} 1 & 4 & 1 \\ -2 & -8 & -2 \\ 1 & 4 & 1 \end{bmatrix}$$

References

- A. C. Kak and M. Slaney, *Principles of Computerized Tomographic Imaging*, IEEE Press, 1987.
- W. Forstner, “A Feature Based Correspondence Algorithm for Image Processing,” *Int. Archives of Photogrammetry and Remote Sensing*, vol.26, pp.150-166, 1986.
- W.T. Freeman and E.H. Adelson, “The Design and Use of Steerable Filters,” *IEEE Trans. Pattern Analysis and Machine Intelligence*, vol. 13, no. 9, pp. 891-906, Sept. 1991.
- J. Canny, “A Computational Approach to Edge Detection,” *IEEE Trans. Pattern Analysis and Machine Intelligence*, vol. 8, no. 6, pp. 679-698, 1986.
- M. Jacob, M. Unser, “Design of Steerable Filters for Feature Detection Using Canny-Like Criteria,” *IEEE Trans. Pattern Analysis and Machine Intelligence*, vol. 26, no. 8, pp. 1007-1019, August 2004.