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Directionality in image processing

■ Importance of directional cues
■ Edges, ridges, patterns, texture
■ Visual perception is orientation-sensitive
■ Organization of primary visual cortex: 

orientation-selective detectors (Hubel-Wiesel)

■ Invariant processing and feature detection
■  Invariant operators: Gradient, Laplacian, ...

■Computational challenges
■ Selectivity to orientation
■ Steerability (orientation can be arbitrary)
■ Separable filters are not orientation-sensitive
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6.1 Mathematical foundations
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■  Rotation property of the Fourier transform
■ Central-slice theorem
■ Steerability of polynomials
■ Directional derivatives
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Rotation in the Fourier domain
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Proof (by change of variable): y = Rx ⇥ dy1 · · · dyd = det(R)⌅ ⇤⇥ ⇧
=1

dx1 · · · dxd

�

Rd

f(Rx)e�j⇥�,x⇤ dx1 · · · dxd =
�

Rd

f(y)e�j⇥�,RT y⇤ dy1 · · · dyd

=
�

Rd

f(y)e�j⇥R�,y⇤ dy1 · · · dyd = f̂(R�)

Example (2⇥ 2 rotation matrix): R� =

�
cos � � sin �

sin � cos �

⇥

Continuous-domain Fourier transform: f̂(�) =
�

Rd

f(x)e�j⇤�,x⌅dx1 · · · dxd

Rotation property of the Fourier transform

f(Rx) F⇤⌅ f̂(R�)

R: Orthonormal d⇥ d matrix such that R�1 = RT
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Central-slice theorem

6

�

�x

�y

p̂ �
(�

)

Fourier transform

Proof: for � = 0

f̂(⇥, 0) =
⇤ +⇥

�⇥

⇤ +⇥

�⇥
f(x, y)e�j�x dxdy =

⇤ +⇥

�⇥

�⇤ +⇥

�⇥
f(x, y) dy

⇥

⌃ ⇧⌅ ⌥
p0(x)

e�j�x dx = p̂0(⇥)

then use rotation property. . .

Radon transform

p�(t) = R {f(x, y)} (t, �)

=
� +⇥

�⇥
f( R�t⌅⇤⇥⇧

x=(x,y)

) ds

�
x

y

⇥
= R�t =

⇤
cos � � sin �

sin � cos �

⌅

⌥ ⌃⇧ �
R�

�
t

s

⇥
x

yp �
(t)

t

�

s

Central-slice theorem

p̂�(⇥) = f̂(⇥ cos �, ⇥ sin �) = f̂pol(⇥, �)
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Steerability of polynomials
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Property. The rotated version of a multidimensional polynomial of degree p is
a polynomial of degree p. This implies that polynomials are “steerable”.

Key observations for establishing rotation property

A multidimensional polynomial of total degree p is a linear combination of

monomials of degree n � p: (xk1
1 xk2

2 · · ·xkd
d ) with

Pd
i=1 ki = n

Applying an affine transformation to a monomial of (total) degree k yields a

linear combination of monomials of degree k =
Pd

i=1 li witk li ⇥ 0
 

dX

i=1

aixi

!k

=
X

l1,l2,...,ld

✓
k

l1, l2, . . . , ld

◆⇣
al11 a

l2
2 · · · aldd

⌘
xl1
1 x

l2
2 · · ·xld

d

(a xn1
i ) · (b xn2

i ) = (ab)xn1+n2
i

⇤ Overall result of rotation = linear combination of monomials
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Reminder: multinomial expansion
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Multinomial coefficients:
�

n

k1, k2, . . . , kd

⇥
=

n!
k1! k2! · · · kd!

with convention that 0! = 1

Generalized version of binomial expansion

(y1 + y2 + · · · + yd)
n =

⌅

k1,k2,...,kd

�
n

k1, k2, . . . , kd

⇥
yk1
1 yk2

2 · · · ykd
d

with summation over all nonnegative multi-integers such that
⇤d

i=1 ki = n
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Explicit steering of a 2D polynomial (optional)

Change of variables: i� j = k + l; j = m� (k + l) and collecting factors

⇥ p�(y1, y2) = p(x1, x2) =
M�

i=0

i�

j=0

bi,j xi�j
1 xj

2

with bi,j = polynomial(cos �, sin �)

Rotated polynomial of degree M : p�(y1, y2) =
M�

m=0

m�

n=0

am,nym�n
1 yn

2

Steering transformation: y1 = cos � x1 � sin � x2, y2 = sin � x1 + cos � x2

ym�n
1 =

m�nX

k=0

 
m� n

k

!
(cos �)k(�1)m�n�k(sin �)m�n�kxk

1xm�n�k
2

yn
2 =

nX

l=0

 
n
l

!
(sin �)l(cos �)n�lxl

1x
n�l
2

p(x1, x2) =
MX

m=0

mX

n=0

am,n

m�nX

k=0

nX

l=0

 
m� n

k

! 
n
l

!
(cos �)k+n�l(�1)m�n�k(sin �)m�n�k+lxk+l

1 xm�(k+l)
2

9



6-Unser: Image processing

Gradient and directional derivatives
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Direction specification: u = (u1, . . . , ud) ⌅ Rd with ⌥u⌥ = 1 (unit vector)

First-order directional derivatives

Duf(x) = lim
h�0

f(x)� f(x� hu)
h

= ⇧u,�f(x)⌃ F⇥⇤ j⇧u,� ⌃f̂(�)

=
d⇤

i=1

ui
⌅f(x)
⌅xi

F⇥⇤
�

j
d⇤

i=1

ui�i

⇥
f̂(�)

Geometric interpretation in 2D

Unit vector: u� = (cos �, sin �)

Du�f(x1, x2) = cos �
⇤f(x1, x2)

⇤x1
+ sin �

⇤f(x1, x2)
⇤x2

max
�u�=1

{Duf} (x1, x2) = ⇤�f(x1, x2)⇤ u�
Du�f

�f

fx2

fx1
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Higher-order directional derivatives
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2D example: n = 2

Unit vector: u� = (cos �, sin �)

D2
u�

f(x1, x2) = cos2 �
⇤2f(x1, x2)

⇤x2
1

+2 cos � sin �
⇤2f(x1, x2)

⇤x1⇤x2
+sin2 �

⇤2f(x1, x2)
⇤x2

2

Direction specification: u = (u1, . . . , ud) ⇧ Rd with ⌃u⌃ = 1 (unit vector)

Directional derivatives of order n

Dn
uf(x) = DuDu · · · Du� ⌥⌃  

n times

f(x) F⇥⇤
⇤

j
d⇧

i=1

ui�i

⌅n

f̂(�)

=
⇧

k1,k2,...,kd

�
n

k1, k2, . . . , kd

⇥
uk1

1 uk2
2 · · · ukd

d

⌅nf(x)
⌅xk1

1 ⌅xk2
2 · · · ⌅xkd

d

⌅ linear combination of partial derivatives of order n
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6.2 Directional image analysis
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■Structure tensor
■ Implementation
■Examples of 2D directional analysis



6-Unser: Image processing

Structure tensor
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Structure tensor at location x0

J(x0) =

Z

Rd

w(x� x0)
⇣
rf(x)rT f(x)

⌘
dx1 · · · dxd

w(x): nonnegative symmetric observation window (e.g., Gaussian)

J: d⇥ d symmetric matrix

Eigenvectors and eigenvalues: Jui = �i · ui, with �1 � · · · � �d

Interpretation (for window centered at x0 = 0)

Weighted differential inner-product matrix: J = hrf,rfiw
[J]i,j = h @f

@xi
, @f
@xj

iw with hf1, f2iw =

Z

Rd

w(x)f1(x)f2(x) dx1 · · · dxd

Energy of the derivative in the direction u

kDufk2w = huTrf,uTrfiw = uT hrf,rfiwu = uTJu

Dominant orientation of neighborhood: u1 = arg max
u,kuk=1

kDufk2w

Eigenvalues: �i = uT
i Jui
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Structure tensor in 2D
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Implementation f2
x

�eq

smoothing
filter

Gradient

×

smoothing
filter×

smoothing
filter×

f(x, y)
fx

fy

f2
y

fxfy

J22(x, y)

J(x, y) =

�
J11(x, y) J12(x, y)
J12(x, y) J22(x, y)

⇥

J11(x, y)

J12(x, y)

Local features

Gradient energy: E = trace(J) = J11 + J22

Orientation: u1 = (cos �, sin �) with � =
1
2

arctan
�

2J12

J22 � J11

⇥

Coherency: 0 ⇥ C =
⇤max � ⇤min

⇤max + ⇤min
=

⇤
(J22 � J11)2 + 4J2

12

J22 + J11
⇥ 1

Harris corner index: H = det(J)� ⇥ trace(J)2 with ⇥ ⇤ [0.04, 0.15]
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Examples of directional analysis
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Input Dx Dy

OrientationCoherency

-𝛱 0 +𝛱0 0.5 1

Orientation



Energy

Coherency

OrientationInput

Gaus

RGB

HSB

Color HSB 

representation

Hue: orientation

Saturation: coherency

Brightness: input



Input

Open-source 
software

Plugins of ImageJ
OrientationJ

Directional Analysis

Keypoints detector 
(Harris Corner)

Distribution of 
orientations

Vector Field

Z. Püspöki et al. "Transforms and 
Operators for Directional Bioimage 
Analysis: A Survey," Advances in 
Anatomy, Embryology and Cell Biology, 
Springer International Publishing, 2016.

http://bigwww.epfl.ch/publications/puespoeki1603.html
http://bigwww.epfl.ch/publications/puespoeki1603.html
http://bigwww.epfl.ch/publications/puespoeki1603.html
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6.3 Steerable filters
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■Directional pattern matching
■Steerable filters
■Derivative-based filters
■Appendix: specific implementations
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Directional pattern matching
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Task: detection/enhancement of a given type of directional pattern 
Example: edge, line, ridge, filament, corner, etc.

Problem: computationally very expensive!

Maximum-likelihood estimator (rotating matched filter)

�̃(x0) = arg max
�

{(f ⇤ h(R�·)) (x0)} where h(x) = f0(�x)

Ĩ(x0) =
�
f ⇤ h(R�̃·)

⇥
(x0)

f0(x) : feature template (elongated blob)

x0 : spatial location (unknown)

R� : 2� 2 rotation matrix by � (unknown)

I : intensity (unknown)

n(x): additive Gaussian noise

Local measurement model

f(x) = I · f0
�
R✓(x� x0)

�
+ n(x)
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Steerable filters
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(Freeman & Adelson, 1991)

Fast filterbank implementation

Fourier-domain equivalence

h(x) steerable � ĥ(�) steerable

Characterization theorem

h(x) steerable of order M � ĥ(�) = ĥpol(⇥, �) = ⇤̂(⇥)
M/2�

m=�M/2

cm(⇥) ejm�

Definition. A 2D filter h(x), x ⇥ R2 is steerable of order M iff. there exist

some basis filters ⇤m(x) and coefficients am(�) such that

⇤� ⇥ [�⇥,⇥], h�(x) := h(R�x) =
M�

m=1

am(�) ⇤m(x)

...f(x) f � h�(x)

a1(�)

aM (�)

�1

�M
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Expansion coefficients

Basis functions

Steerable, derivative-based filters

22

Isotropic lowpass function (e.g., Gaussian): '(x1, x2)

Subspace of steerable derivative-based templates:

h(x1, x2) =
MX

m=0

mX

n=0

bm,n
@m

@xm�n
1 @xn

2

'(x1, x2)

| {z }
'm,n(x1,x2)

Proposition. h(x1, x2) is steerable in the sense that

(f ⇤ h(R✓·))(x) =
MX

m=0

mX

n=0

am,n(✓)fm,n(x)

where fm,n(x) =

✓
f ⇤ @m

@xm�n
1 @xn

2

'

◆
(x) and am,n(✓) = poly(cos ✓, sin ✓).

Justification: ĥ(!) = '̂(k!k) ·
MX

m=0

mX

n=0

bm,n (j!1)
m�n(j!2)

n

| {z }
steerable polynomial
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Examples: Basic edge and ridge detectors
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f(x)

cos(�)

sin(�)
Du� (� � f)(x)

h = ⇥�
⇥x1

⇥�
⇥x2

Hessian-based ridge detector

h(x) = ⇥20(x) = ⇤2⇥(x)
⇤x2

1

⇥ij(x) = ⇤2⇥(x)
⇤xi⇤xj

h(R�x) = D2
u�

⇥(x)

= (cos �)2 ⇥20(x) + 2 cos � sin � ⇥11(x) + (sin �)2 ⇥02(x)

f(x)
2 cos(�) sin(�)

cos2(�)

sin2(�)

D2
u�

(� � f)(x)

⇥2�
⇥x2

1

⇥2�
⇥x1⇥x2

⇥2�
⇥x2

2

Gradient-based edge detector

h(x) = ⇥1(x) = ⇤⇥(x)
⇤x1

⇥2(x) = ⇤⇥(x)
⇤x2

h(R�x) = Du�⇥(x)

= �u�,�⇥⇥ = cos � ⇥1(x) + sin � ⇥2(x)
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Optimized steerable detectors

24(Jacob et al., IEEE-PAMI, 2004)

thresholded magnitude

2nd order 4th order

Canny-like criterion of optimality

Reasonable approximation of ideal detector: f0(x, y) = ⇥(y)
Maximum signal-to-noise ratio

Good spatial localization

Reduced oscillation

Constrained optimization of �k,i using Lagrange multipliers

Ridge detectors

...
a1(�)

aM (�)

�1

�M

��(x) = arg max
�

{(h� � f)(x)}
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Appendix: specific implementations
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■Edge detector
■Ridge detector
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Edge detector: implementation
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Gradient

smoothing
filter Gradient Non-maximum

suppression
Hysteresis
threshold

Edge map

�eq (Tlow, Thigh)

modulus

phase

1
6 · 2

2

64
�1 0 1
�4 0 4
�1 0 1

3

75

1
6 · 2

2

64
�1 �4 �1

0 0 0
1 4 1

3

75

f(k, l)

fx(k, l)

fy(k, l)

Smoothing
Gaussian filter: isotropic + separable
Implementation: cascade of simple recursive filters

Steerable filter

�f = (fx, fy)

��f� =
�

f2
x + f2

y

State-of-the-art edge detector
Edge point = local maximum of first directional derivative
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Edge detector (Cont’d)
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else g(x0) = 0

Hysteresis threshold

Set of points: k = (k, l) � Z2

Final edge map:

E = {k � Elow � Ehigh | there exits a path that connects k to Ehigh}

Non-maximum suppression
Current point: x0 = (k, l)

Two auxiliary edge maps:

Elow = {k | Tlow � g[k] < Thigh}

Ehigh = {k | Thigh � g[k]}

u =
�f(x0)
��f(x0)�

: unit vector in the direction of the gradient

If ⇤�f(x0)⇤ ⇥ ⇤�f(x0 ± u)⇤ then g(x0) = ⇤�f(x0)⇤
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Ridge or line detector
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�

u is an eigenvector of H with eigenvalue �

Hu = �u � det(H� �I) = 0

Extrema values:
�max = max

�u�=1

�
uT Hu

�
(maximum eigenvalue of H)

�min = min
�u�=1

�
uT Hu

�
(minimum eigenvalue of H)

Positive ridge detection

Criterion: �min ⌅ 0 and �max ⇤ 0

Figure of merit: g(x) =
�

|�min| ·
�

|�max � �min| ⇤ |�min| (on ridge)

Direction perpendicular to the ridge: umin (eigenvector of H corresponding to �min)

Smoothed Hessian matrix at location x: H =

�
(�xx � f)(x) (�xy � f)(x)
(�yx � f)(x) (�yy � f)(x)

⇥

Steering in the direction u = (cos �, sin �) (unit vector): D2
u⇥ � f = uT Hu

Signature of a ridge point

Strong (negative) response to “steered” ridge detector & weak response in orthogonal direction
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Steerable filter

Ridge detector: implementation
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smoothing
filter Hessian Non-maximum

suppression
Hysteresis
threshold

Ridge map

�eq (Tlow, Thigh)

Figure
of merit

�

Hessian masks

umin = (cos ✓, sin ✓)

g(x) =
�

|�min| ·
�

|�max � �min|
Eigendecomposition of Hessian matrix =�

�2

�x2
:

1
6

�

��
1 �2 1
4 �8 4
1 �2 1

�

��
�2

�x�y
:

1
2 · 2

�

��
1 0 �1
0 0 0
�1 0 1

�

��

�2

�y2
:

1
6

�

��
1 4 1
�2 �8 �2

1 4 1

�

��

Canny-inspired ridge detector

Positive ridge point : local minimum of second derivative
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